
12/01
COMPUTER SCIENCE 261
COMPUTER SCIENCE II

I. Introduction

A. Catalog Description

This course is a continuation of the topics introduced in CSCI161. It provides an
introduction to the study of fundamental data structures and their associated
algorithms. Students will learn how to choose appropriate data structures and
algorithms for particular problems. They will learn about lists, stacks, queues, trees,
sorting, searching, abstract data types, and object-oriented programming using an
object-oriented programming language. Prerequisites: CSCI 161 together with
MATH 121 or 258; or permission of the instructor. Satisfies the Mathematical
Reasoning core requirement.

B. Learning Objectives
1. Learn about data structures and their associated algorithms.
2. Be introduced to proofs of program correctness.

3. Continue the development of good programming style, including object-oriented
methods.

4. Be introduced to more advanced methods of program design (including data
abstraction, information hiding, and object-oriented design), debugging, and
testing.

5. Learn the fundamentals of algorithmic analysis.

6. Work with other students on programming projects.

This course satisfies the Mathematical Approaches category of the university's core
curriculum by developing an appreciation of the power of Computer Science and
formal methods to provide a way of understanding a problem unambiguously,
describing its relation to other problems, and specifying clearly an approach to its
solution. A student in this course will develop a variety of mathematical skills, an
understanding of formal reasoning, and a facility with applications. Specifically, this
course will provide the student with the ability to analyze a problem, to design a
systematic way of addressing that problem (an algorithm), and to implement that
algorithm in a computer programming language.

C. Prerequisites

1. Computer Science 161 together with Math 121, or 258. A grade of C- is
required in the prerequisite courses.

II. Required Topics
A. Program Design

1. Top-down implementation, object-oriented design, testing and debugging
techniques; Stub procedures and driver programs.

COMPUTER SCIENCE 261
COMPUTER SCIENCE II Page 2

II. Required Topics (cont.)
B. Simple Data Structures

1. Data abstraction. Basic implementation techniques and algorithms associated
with stacks, queues, linked lists, and binary trees.

C. Arrays, Searching and Sorting

1. Unsorted lists: Insertion, deletion, and linear search
2. Sorted lists: Insertion, deletion, linear search, and binary search
3. Sorting: At least one O(n^2) algorithm, and one O(n log n) algorithm

D. Linked Lists
1. Pointers
2. Traversal, insertion, deletion and search operations
3. Doubly-linked list representation and operations

E. Queues and Stacks
1. Array and linked list implementations
2. Insertion and deletion operations

F. Trees
1. Pointer representations of a binary tree
2. Binary search trees
3. Recursive binary tree traversals: inorder, preorder, and postorder

G. Analysis of Algorithms
1. Fundamentals of algorithm analysis, asymptotic behavior and space vs. time

tradeoffs.
H. Program Verification

1. Loop invariants, mathematical induction, preconditions and postconditions.

I. Recursion

1. Recursive data structures and algorithms. When to use recursion and when not
to.

J. Hash Tables

1. Hash functions

2. Collision-resolution policies

IV. Bibliography
D. Gries, The Science of Programming
E. Knuth, The Art of Computer Programming, Vols. I, II, III
L. Nyhoff C++ An Introduction of Data Structures
C. Shaffer A Practical Introduction to Data Structures and Algorithm Analysis
N. Wirth, Algorithms + Data Structures = Programs
(video) Sorting Out Sorting

