1 Some useful formulæ

1.1 Chapter 6

margin of error: $m=z^{*}\left(\frac{\sigma}{\sqrt{n}}\right)$
Where z^{*} is the critical z-value (bottom of table D)
test statistic: For $H_{0}: \mu=\mu_{0}$:

$$
z=\frac{\left(\bar{x}-\mu_{0}\right)}{\left(\frac{\sigma}{\sqrt{n}}\right)}
$$

1.2 Chapter 7

margin of error for the mean of a single population:
$m=t^{*} \times S E_{\bar{x}}$, where
$S E_{\bar{x}}=\frac{s}{\sqrt{n}}$ and
t* is the critical t-value for ($\mathrm{n}-1$) degrees of freedom for the appropriate confidence level (table D) and s is the sample standard deviation.
test statistic for the mean of a single population: For $H_{0}: \mu=\mu_{0}$:
$t=\frac{\left(\bar{x}-\mu_{0}\right)}{S E_{\bar{x}}}$
Where t follows the Student's t -distribution with ($\mathrm{n}-1$) degrees of freedom
margin of error for the difference in means (two populations): for the estimated difference in means $\mu_{1}-\mu_{2}$ approximated by $\overline{x_{1}}-\overline{x_{2}}$:
$m=t^{*} \times \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
where t^{*} is the critical t-value for the appropriate degrees of freedom (table D) and s_{1}, s_{2} are the sample standard deviations.
test statistic for the difference in means in two populations
Where $H_{0}: \mu_{1}=\mu_{2}$:
$t=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$
were the degrees of freedom can either be taken as the smaller of $n_{1}-1$ and $n_{2}-1$), or calculated by software.

1.3 Chapter 8

Large Sample Confidence interval for a Population Proportion

$S E_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
$m=z^{*} \times S E_{\hat{p}}$
and where $\hat{p}=\frac{X}{n}$ is the sample proportion.

Large Sample Significance Test for a Population Proportion

$H_{0}: p=p_{0}$
$z=\frac{\hat{p}-p_{0}}{S E_{\hat{p}}}$

Large-Sample Confidence Interval for Comparing Two Proportions

$m=z^{*} \times \sqrt{\frac{\hat{p_{1}\left(1-\hat{p_{1}}\right)}}{n_{1}}+\frac{\hat{p_{2}}\left(1-\hat{p_{2}}\right)}{n_{2}}}$
where $\hat{p_{1}}=\frac{X_{1}}{n_{1}}$ is the proportion of successes from population 1, and $\hat{p_{2}}=\frac{X_{2}}{n_{2}}$ is the proportion of successes from population 2,

Large Sample Significance Test for Comparing Two Proportions
The z test statistic for $H_{0}: p_{1}=p_{2}$ is
$z=\frac{\hat{p_{1}-\hat{p_{2}}}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
where \hat{p} is the pooled sample proportion
$\hat{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}$
Please let me know of any typos or apparent errors in the above. Many thanks! -Bob

