\documentstyle{article} \begin{document} \noindent Computer Science 261 \hfill \break Exercise set \#6 \hfill \break Due: Thursday, Oct. 11 \hfill \break\vspace{3ex} \noindent (Incorporating corrections made in class) \break\hfill \vspace{3ex} \noindent {\bf Set Theory} Suppose that \begin{itemize} \item A = \{a, b, d, e\} \item B = \{b, c, d, f\} \item C = \{r, s \} \end{itemize} calculate \begin{itemize} \item $A \cap B$ \item $A \cup B$ \item $A - B$ \item $C \times A$ \end{itemize} \noindent {\bf Truth Tables} Write truth tables for the following: \begin{itemize} \item $p \rightarrow q$ \item $\neg p \rightarrow \neg q$ \item $\neg q \rightarrow \neg p$ \item $\neg p \lor q$ \item $\neg (p \land q)$ \item $\neg p \lor \neg q$ \item $\neg (p \lor q)$ \end{itemize} Digital circuitry uses {\bf nand} (not and) and {\bf nor} (not or) and inverter gates. We usually write 0 for false (or no current) and 1 for true (or 5v current). With this in mind, what will be the output of the circuit given by \begin{itemize} \item (p nand q) nor (not p) ? \item can you draw the circuit? \item can you construct a circuit that will give us $\neg p \lor q$? \end{itemize} \newpage \noindent {\bf Induction} \begin{description} \item{A.} \begin{itemize} \item State the principle of mathematical induction \item It is a property of positive integers that any subset of positive integers has a smallest element in the subset (this is not true, for example, of rational numbers or real numbers). Use this fact to give an informal argument for the principle of induction. {\bf Hint:} For a given statement about positive integers, consider the subset consisting of all positive integers for which the statement is {\bf false}. \end{itemize} \item{B.} Prove the following statements using mathematical induction \begin{itemize} \item $\sum_{k=1}^n{k} = \frac{n(n+1)}{2}$ \item $\sum_{k=1}^n{k^2}=\frac{n(2n+1)(n+1)}{6}$ \item $\sum_{k=0}^n{2^k} = 2^{(n+1)}-1$ \item $\sum_{k=0}^n{\frac{1}{2^k}} = 2 - \frac{1}{2^n}$ \item $\sum_{k=1}^n{k2^k}=(n-1)2^{(n+1)}+2$ \item Recall that Fibonacci numbers are defined with $F_0 = F_1 = 1, F_2 = 2,\ldots$ and so on. if $\phi = \frac{(1+\sqrt{5})}{2}$, prove that $F_n \geq \phi^{{n-1}}$ for $n \geq 1$ You can use the fact that $\phi^2 = 1+\phi$. An interesting exercise would also be to show that $F_n \leq \phi^n$ and use this to make a guess about $lim_{n \rightarrow \infty}{\frac{F_{n+1}}{F_n}}$. (This question was done in class, and so will not be marked) \end{itemize} \end{description} \end{document}