Using Ricci Flow to Improve Your Manifold's Shape (and to Prove the Poincaré Conjecture)

Martin Jackson
University of Puget Sound

April 4, 2007
PLU Math Seminar

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Disclaimers

- this talk with be filled with white lies and half truths
- the speaker has almost no understanding of the technical details in recent work on Ricci flow

Poincaré Conjecture

- Poincaré Conjecture: The sphere is the only three dimensional closed manifold that is simply connected.
- terminology
- manifold: a space that locally looks like Euclidean space
- closed: finite in extent with no edges
- simply connected: every closed loop can be shrunk to a point or, equivalently, every circle is the boundary of a disk
- examples of closed manifolds (two-dimensional): sphere, torus, "two-holed" torus

- topology looks at shape while ignoring information about distances and angles
- for geometry, require manifolds to be smooth and orientable

Outline

Introduction

Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces Geometrization of 3-Manifolds

Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Gluing to get surfaces

- Glue square to get torus

- Glue octagon to get two-holed torus

Gluing to get surfaces

- Glue all points at infinity to get sphere using stereographic projection

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

A small taste of geometry

- walk around one point on the torus

- walk around one point on the two-holed torus

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Geometry on the plane

Cartesian coordinates:
Euclidean distance between (x, y) and $(x+d x, y+d y)$ is

$$
d s_{E}^{2}=d x^{2}+d y^{2}
$$

Polar coordinates:
Euclidean distance between (r, θ) and $(r+d r, \theta+d \theta)$ is

$$
d s_{E}^{2}=d r^{2}+r^{2} d \theta^{2}
$$

Geometry on the plane

- get length of a curve C by adding up (integrating) $d s_{E}$ along curve:

- Example: length of a circle of radius $r=r_{0}$

$$
d s_{E}^{2}=d r^{2}+r^{2} d \theta^{2}=0+r_{0}^{2} d \theta^{2}
$$

SO

$$
L=\int_{C} d s=\int_{0}^{2 \pi} r_{0} d \theta=r_{0} \cdot 2 \pi
$$

Geometry on the sphere

- Claim: With stereographic projection, lengths on the sphere are related to lengths in the plane by

$$
d s_{s}^{2}=\left(\frac{1}{1+\frac{1}{4} r^{2}}\right)^{2} d s_{E}^{2}
$$

- express $d s_{E}$ in polar coordinates

$$
d s_{s}^{2}=\left(\frac{1}{1+\frac{1}{4} r^{2}}\right)^{2}\left(d r^{2}+r^{2} d \theta^{2}\right)=\left(\frac{1}{1+\frac{1}{4} r^{2}}\right)^{2} d r^{2}+\left(\frac{r}{1+\frac{1}{4} r^{2}}\right)^{2} d \theta^{2}
$$

Geometry on the sphere

- Example: spherical length of latitude circle
- projects to a Euclidean circle of some radius $r=r_{0}$
- again have $d r=0$ so

$$
L_{s}=\int_{C} d s=\int_{0}^{2 \pi} \frac{r_{0}}{1+\frac{1}{4} r_{0}^{2}} d \theta=\frac{r_{0}}{1+\frac{1}{4} r_{0}^{2}} \cdot 2 \pi
$$

Geometry on the sphere

- Example: spherical length of longitude semi-circle
- projects to a Euclidean ray at some angle $\theta=\theta_{0}$
- let r range from 0 to r_{0}
- now have $d \theta=0$ so

$$
L_{s}=\int_{0}^{r_{0}} \frac{1}{1+\frac{1}{4} r^{2}} d r=2 \tan ^{-1}\left(\frac{r_{0}}{2}\right)
$$

A different geometry

- a new distance expression

$$
d s_{H}^{2}=\left(\frac{1}{1-r^{2}}\right)^{2} d s_{E}^{2}=\left(\frac{1}{1-r^{2}}\right)^{2} d r^{2}+\left(\frac{r}{1-r^{2}}\right)^{2} d \theta^{2}
$$

- restrict to the Euclidean disk with $r<1$
- H-length of Euclidean circle centered at origin
- with $d r=0$

$$
L_{H}=\int_{0}^{2 \pi} \frac{r_{0}}{1-r_{0}^{2}} d \theta=\frac{r_{0}}{1-r_{0}^{2}} \cdot 2 \pi
$$

- note that H-length increases without bound as r_{0} approaches 1

A different geometry

- H-length of a Euclidean ray starting at origin
- with $d \theta=0$ and going from $r=0$ to

$$
r=r_{0}
$$

$$
L_{H}=\int_{0}^{r_{0}} \frac{1}{1-r^{2}} d r=\ln \left(\frac{1+r_{0}}{1-r_{0}}\right)
$$

- note that H -length increases without bound as r_{0} approaches 1
- H-length is short for "hyperbolic length"
- metric view of Poincaré disk model of the hyperbolic plane

Outline

Introduction

Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Lines in the hyperbolic plane

- fix two points and ask "What path has the shortest

H-distance between these two points?"

- shortest hyperbolic curve between two points is along the Euclidean circle through the points that is orthogonal to the boundary of the Euclidean disk $r<1$
- refer to these shortest hyperbolic curves as hyperbolic lines or H-lines

Lines in the hyperbolic plane

- fix two points and ask "What path has the shortest

H-distance between these two points?"

- shortest hyperbolic curve between two points is along the Euclidean circle through the points that is orthogonal to the boundary of the Euclidean disk $r<1$
- refer to these shortest hyperbolic curves as hyperbolic lines or H-lines

Lines in the hyperbolic plane

- fix two points and ask "What path has the shortest

H-distance between these two points?"

- shortest hyperbolic curve between two points is along the Euclidean circle through the points that is orthogonal to the boundary of the Euclidean disk $r<1$
- refer to these shortest hyperbolic curves as hyperbolic lines or H-lines

Lines in the hyperbolic plane

- fix two points and ask "What path has the shortest

H-distance between these two points?"

- shortest hyperbolic curve between two points is along the Euclidean circle through the points that is orthogonal to the boundary of the Euclidean disk $r<1$
- refer to these shortest hyperbolic curves as hyperbolic lines or H-lines

Angles in the hyperbolic plane

- hyperbolic angle between two hyperbolic lines with a common point is the Euclidean angle between the tangents to the Euclidean boundary-orthogonal circles

Octagons in the hyperbolic plane

- look at regular octagons in the hyperbolic plane
- small octagon has interior angle of about $3 \pi / 4$
- large octagon (vertices near boundary of disk) has interior angle of about 0
- in between, there is a regular octagon with an interior angle of $\pi / 4$.
- can glue this octagon into a smooth "two-holed torus"

Octagons in the hyperbolic plane

- look at regular octagons in the hyperbolic plane
- small octagon has interior angle of about $3 \pi / 4$
- large octagon (vertices near boundary of disk) has interior angle of about 0
- in between, there is a regular octagon with an interior angle of $\pi / 4$.
- can glue this octagon into a smooth "two-holed torus"

Octagons in the hyperbolic plane

- look at regular octagons in the hyperbolic plane
- small octagon has interior angle of about $3 \pi / 4$
- large octagon (vertices near boundary of disk) has interior angle of about 0
- in between, there is a regular octagon with an interior angle of $\pi / 4$.
- can glue this octagon into a smooth "two-holed torus"

Octagons in the hyperbolic plane

- look at regular octagons in the hyperbolic plane
- small octagon has interior angle of about $3 \pi / 4$
- large octagon (vertices near boundary of disk) has interior angle of about 0
- in between, there is a regular octagon with an interior angle of $\pi / 4$.
- can glue this octagon into a smooth "two-holed torus"

Octagons in the hyperbolic plane

- look at regular octagons in the hyperbolic plane
- small octagon has interior angle of about $3 \pi / 4$
- large octagon (vertices near boundary of disk) has interior angle of about 0
- in between, there is a regular octagon with an interior angle of $\pi / 4$.
- can glue this octagon into a smooth "two-holed torus"

Octagons in the hyperbolic plane

- look at regular octagons in the hyperbolic plane
- small octagon has interior angle of about $3 \pi / 4$
- large octagon (vertices near boundary of disk) has interior angle of about 0
- in between, there is a regular octagon with an interior angle of $\pi / 4$.
- can glue this octagon into a smooth "two-holed torus"

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Geometrization of surfaces

- can construct a smooth "two-holed" torus using an octagon in the hyperbolic plane
- terminology: we say that the "two-holed" torus admits a geometric structure modeled on the hyperbolic plane H^{2}
- a geometry on a manifold is a model geometry if it is simply connected and homogeneous
- simply connected: every loop can be shrunk to a point
- homogeneous: the geometry of the manifold looks the same at all points
- for two dimension, there are three model geometries:
- the "round" sphere S^{2}
- the Euclidean plane E^{2}
- the hyperbolic plane H^{2}
- model geometries provide a way of classifying closed two-dimensional manifolds
- the sphere admits a geometric structure modeled on S^{2}
- the torus admits a geometric structure modeled on E^{2}
- for $n \geq 2$, an " n-holed" torus admits a geometric structure modeled on H^{2}

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Geometrization of 3-manifolds

- does this classification by model geometries work in dimension three?
- in dimension three, there are 8 model geometries
- three obvious generalizations: S^{3}, E^{3}, H^{3} (these are homogeneous and isotropic)
- five less obvious ones: $S^{2} \times \mathbb{R}, H^{2} \times \mathbb{R}, \widetilde{S L}(2, \mathbb{R})$, Nil, Sol (these are homogeneous but not isotropic)
- however, not every three-dimensional manifold admits a geometric structure
- to deal with this, do surgery
- cut out any two-sphere that does not bound a solid ball
- cut out any two-torus that does not bound a solid torus

The Geometrization Conjecture

- Theorem: A finite number of two-sphere and two-torus surgeries will decompose a closed three-manifold into pieces on which no further surgery is possible.
- Geometrization Conjecture: Any closed three-manifold can be decomposed into pieces by surgery and each piece admits a geometric structure based on one of the eight model geometries.

- proposed by William Thurston in 1982

Back to the Poincaré Conjecture

- Geometrization Conjecture: Any closed three-manifold can be decomposed into pieces by surgery and each piece admits a geometric structure based on one of the eight model geometries.
- the Geometrization Conjecture implies the Poincaré Conjecture
- simply connected implies no two-torus surgery possible
- surgery by two-spheres produces closed pieces
- only closed model geometry is S^{3}

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Curvature of a plane curve

- at a point, find radius R of the "bestfit" circle
- define curvature as reciprocal of this radius:

$$
k=\frac{1}{R}
$$

- another view: rate at which the tangent vector changes with respect to distance along curve
- pick origin and let \vec{C} be position vector for point on curve
- tangent vector is $\frac{d \vec{C}}{d s}$ where s is length along curve
- curvature is rate at which tangent vector changes so

$$
k=\left|\frac{d}{d s} \frac{d \vec{C}}{d s}\right|=\left|\frac{d^{2} \vec{C}}{d s^{2}}\right|
$$

Curvature of a plane curve

- at a point, find radius R of the "bestfit" circle
- define curvature as reciprocal of this radius:

$$
k=\frac{1}{R}
$$

- another view: rate at which the tangent vector changes with respect to distance along curve
- pick origin and let \vec{C} be position vector for point on curve
- tangent vector is $\frac{d \vec{C}}{d s}$ where s is length along curve
- curvature is rate at which tangent vector changes so

$$
k=\left|\frac{d}{d s} \frac{d \vec{C}}{d s}\right|=\left|\frac{d^{2} \vec{C}}{d s^{2}}\right|
$$

Curvature of a plane curve

- at a point, find radius R of the "bestfit" circle
- define curvature as reciprocal of this radius:

$$
k=\frac{1}{R}
$$

- another view: rate at which the tangent vector changes with respect to distance along curve
- pick origin and let \vec{C} be position vector for point on curve
- tangent vector is $\frac{d \vec{C}}{d s}$ where s is length along curve
- curvature is rate at which tangent vector changes so

$$
k=\left|\frac{d}{d s} \frac{d \vec{C}}{d s}\right|=\left|\frac{d^{2} \vec{C}}{d s^{2}}\right|
$$

Curvature of a plane curve

- at a point, find radius R of the "bestfit" circle
- define curvature as reciprocal of this radius:

$$
k=\frac{1}{R}
$$

- another view: rate at which the tangent vector changes with respect to distance along curve
- pick origin and let \vec{C} be position vector for point on curve
- tangent vector is $\frac{d \vec{C}}{d s}$ where s is length along curve
- curvature is rate at which tangent vector changes so

$$
k=\left|\frac{d}{d s} \frac{d \vec{C}}{d s}\right|=\left|\frac{d^{2} \vec{C}}{d s^{2}}\right|
$$

Curvature of a plane curve

- special case: curve is graph of a function $y=f(x)$
- formula for curvature $k(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}}$
- example: parabola $y=x^{2}$ has $k(x)=\frac{2}{\left(1+4 x^{2}\right)^{3 / 2}}$

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Curvature of a surface: extrinsic view

- at point P, cut surface with plane that contains the normal vector; intersecton of surface and plane is a curve in the plane; get curvature of this curve at P
- rotate plane around normal vector to look at curve curvatures of all crosssections
- let k_{1} be minimum curve curvature and k_{2} be maximum curve curvature; define curvature of surface at the point P as product

$$
K=k_{1} k_{2}
$$

- called Gaussian curvature of the surface at point P

Curvature of a surface: extrinsic view

- example: round sphere of radius R has $K=\frac{1}{R^{2}}$ at all points

- example: saddle $z=x^{2}-y^{2}$ has $K=(-2)(2)=-4$ at origin

- example: "standard" torus has positive curvature on outer part and negative curvature on inner part

Curvature of a surface: intrinsic view

- let ΔT be a small triangle containing the point P; let α, β, and γ be radian measures of the three angles
- can check how much angle sum $\alpha+\beta+\gamma$ differs from π
- define curvature at P by

$$
K=\lim _{\Delta T \rightarrow P} \frac{\pi-(\alpha+\beta+\gamma)}{\text { area of } \Delta T}
$$

- example: triangles in Euclidean plane have $\alpha+\beta+\gamma=\pi$ so $K=0$

Curvature of a surface: intrinsic view

- example: triangles in sphere have $\alpha+\beta+\gamma>\pi$ so $K>0$

- example: triangles in hyperbolic plane have $\alpha+\beta+\gamma<\pi$ so $K<0$

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Geometry on manifolds

- geometry is encoded in the expression for ds
- let $\left(x_{1}, x_{2}\right)$ be some generic coordinates for the Euclidean plane
- previous examples used $x_{1}=r$ and $x_{2}=\theta$
- general expression for $d s$ is

$$
d s^{2}=\sum_{i=1}^{2} \sum_{j=1}^{2} g_{i j} d x_{i} d x_{j}
$$

- think of the $g_{i j}$ as entries in a 2×2 matrix g
- example: for hyperbolic geometry

$$
\begin{gathered}
g_{11}=\left(\frac{1}{1-r^{2}}\right)^{2} \quad g_{22}=\left(\frac{r}{1-r^{2}}\right)^{2} \quad g_{12}=g_{21}=0 \\
g=\left[\begin{array}{cc}
\left(\frac{1}{1-r^{2}}\right)^{2} & 0 \\
0 & \left(\frac{r}{1-r^{2}}\right)^{2}
\end{array}\right]
\end{gathered}
$$

- g is called a metric and the $g_{i j}$ are components of the metric
- must be symmetric and positive definite (so $d s^{2} \geq 0$)
- easily generalize to higher dimensions by letting indices i and j range from 1 to n

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Curvature of a manifold

- basic idea: at a point, use Gaussian curvatures of two-dimensional surfaces through that point; these are called sectional curvatures
- information on sectional curvatures encoded in Riemann curvature tensor Rm
- think of Rm as machine that eats four vectors, spits out a number
- $\operatorname{Rm}(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ is a number with specific geometric interpretation
- special case: pick \vec{u} and \vec{v} to be perpendicular unit vectors
- $\operatorname{Rm}(\vec{u}, \vec{v}, \vec{u}, \vec{v})$ is the sectional curvature for the surface to which \vec{u} and \vec{v} are tangent

Curvature of a manifold

- there is a formula for components $\mathrm{Rm}_{i j k l}$ that involves second derivatives of the metric components $g_{i j}$ with terms like

$$
\frac{\partial^{2} g_{i j}}{\partial x_{k} \partial x_{l}}
$$

- two curvature quantities derived from Rm
- let \vec{e}_{i} be unit vector tangent to x_{i} coordinate direction
- Ricci curvature Rc defined by $\operatorname{Rc}(\vec{a}, \vec{b})=\sum_{i=1}^{n} \operatorname{Rm}\left(\vec{e}_{i}, \vec{a}, \vec{e}_{i}, \vec{b}\right)$
- scalar curvature R defined by $\mathrm{R}=\sum_{j=1}^{n} \operatorname{Rc}\left(\vec{e}_{j}, \vec{e}_{j}\right)$
- think of these as averages of sectional curvatures

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Curve shortening

- simple topology problem: is any closed curve in the plane (with no self-intersections) homeomorphic to a circle?
- easy answer for a convex curve: use radial projection

- need a complicated way to approach the problem for a more general closed curve; will look at a not-so-obvious idea

Curve shortening

- define a motion of the curve by assigning to each point a velocity that is perpendicular to the curve at that point with magnitude equal to the signed curvature

$$
\frac{\partial \vec{C}}{\partial t}=k \vec{N}
$$

- this is a partial differential equation in the category of heat equations
- analyze the initial value problem for this equation and find (Gage, Hamilton, Grayson, mid 80s)
- for any initial curve, a solution exists
- the length and area enclosed by the evolving curve decrease in time with area decreasing linearly
- evolving curve becomes circular as area goes to zero
- can rescale to keep length constant in which case evolving curve converges to a circle as $t \rightarrow \infty$

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Ricci flow

- analog of curve shortening for a general manifold
- Ricci flow defined by an evolution equation for the metric

$$
\frac{\partial g_{i j}}{\partial t}=-2 \mathrm{Rc}_{i j}
$$

- sometimes convenient to rescale so volume of evolving geometry on manifold is constant; can do this by including an addition term

$$
\frac{\partial g_{i j}}{\partial t}=-2 \mathrm{Rc}_{i j}+\frac{2}{3} \bar{R} g_{i j}
$$

where \bar{R} is the average of the scalar curvature over the manifold

- study initiated by Richard Hamilton with focus on dimension three
- fairly easy general results
- any symmetry of the initial metric is preserved in the evolving geometry of solution
- if the normalized flow converges, the limit is an Einstein geometry which are well understood

Outline

Introduction
Topology and Geometry
Gluing to get surfaces
Some geometry
The hyperbolic plane
Geometrization
Geometrization of Surfaces
Geometrization of 3-Manifolds
Curvature
Curvature of a curve
Curvature of surfaces
Geometry in general
Curvature of manifolds
Geometric evolution equations
Curve shortening flow
Ricci flow
Ricci flow approach to geometrization

Ricci flow approach to geometrization

- first major result (Hamilton, 1982): if the initial metric has positive Ricci curvature at all points, then the (normalized) Ricci flow has a solution that converges to the geometry of the round three-sphere
- if Ricci flow does not converge, look at two cases depending on whether curvature remains bounded at all points or not
- (Hamilton, 1999) if curvature remains bounded, manifold can be decomposed (with torus surgeries) into pieces that admit geometric structure
- unbounded curvature at a point corresponds to the geometry "pinching down" in a singularity
- Hamilton conjectured that these pinching singularities are related to two-sphere surgeries
- idea: stop flow just before singularity, do surgery, restart flow on each resulting piece

Ricci flow approach to geometrization

- Hamilton's conjecture: For any initial metric on a three-manifold, Ricci flow with surgery with result in a finite number of pieces each of which admits a model geometry.
- work of Gregory Perelman
- three preprints in 2002-2003
- geometry near any singularity has standard structure on which surgery is possible
- there are finitely many singularity formations
- within the last year, several groups have independently released more complete versions of a proof based on the work of Hamilton and Perelman
- Perelman offered a Fields Medal
- Science Magazine "Breakthrough of the Year" for 2006

