Using symmetry to solve differential equations

Martin Jackson
Mathematics and Computer Science, University of Puget Sound

March 6, 2012

Outline

(1) "Magic" coordinates

Outline

(1) "Magic" coordinates
(2) Symmetries of a differential equation

Outline

(1) "Magic" coordinates
(2) Symmetries of a differential equation
(3) Using a symmetry to find "magic" coordinates

Outline

(1) "Magic" coordinates
(2) Symmetries of a differential equation
(3) Using a symmetry to find "magic" coordinates
(4) Finding symmetries of a differential equation

Outline

(1) "Magic" coordinates
(2) Symmetries of a differential equation
(3) Using a symmetry to find "magic" coordinates
(4) Finding symmetries of a differential equation
(5) Topics for another time
"Magic" coordinates

"Magic" coordinates

- start with a differential equation $\frac{d y}{d x}=f(x, y)$

"Magic" coordinates

- start with a differential equation $\frac{d y}{d x}=f(x, y)$

"Magic" coordinates

- start with a differential equation $\frac{d y}{d x}=f(x, y)$
- goal: find new variables to get $\frac{d s}{d r}=g(r)$

"Magic" coordinates

- start with a differential equation $\frac{d y}{d x}=f(x, y)$
- goal: find new variables to get $\frac{d s}{d r}=g(r)$

- Example: $\frac{d y}{d x}=y$
- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem
- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- obvious choice: $r=y$ and $s=x$
- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- obvious choice: $r=y$ and $s=x$
- change coordinates:
- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- obvious choice: $r=y$ and $s=x$
- change coordinates:

$$
\frac{d s}{d r}
$$

- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- obvious choice: $r=y$ and $s=x$
- change coordinates:

$$
\frac{d s}{d r}=\frac{d x}{d y}
$$

- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- obvious choice: $r=y$ and $s=x$
- change coordinates:

$$
\frac{d s}{d r}=\frac{d x}{d y}=\frac{1}{d y / d x}
$$

- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- obvious choice: $r=y$ and $s=x$
- change coordinates:

$$
\frac{d s}{d r}=\frac{d x}{d y}=\frac{1}{d y / d x}=\frac{1}{y}
$$

- Example: $\frac{d y}{d x}=y$
- find new coordinates (r, s) to simplify problem

- obvious choice: $r=y$ and $s=x$
- change coordinates:

$$
\frac{d s}{d r}=\frac{d x}{d y}=\frac{1}{d y / d x}=\frac{1}{y}=\frac{1}{r}
$$

Using＂magic＂coordinates

Using "magic" coordinates

- change coordinates:

$$
\frac{d y}{d x}=y \Longrightarrow \frac{d s}{d r}=\frac{1}{r}
$$

Using "magic" coordinates

- change coordinates:

$$
\frac{d y}{d x}=y \Longrightarrow \frac{d s}{d r}=\frac{1}{r}
$$

- integrate:

$$
s=\int \frac{1}{r} d r=\ln r+C
$$

Using "magic" coordinates

- change coordinates:

$$
\frac{d y}{d x}=y \Longrightarrow \frac{d s}{d r}=\frac{1}{r}
$$

- integrate:

$$
s=\int \frac{1}{r} d r=\ln r+C
$$

- change back:

$$
x=\ln y+C
$$

Using "magic" coordinates

- change coordinates:

$$
\frac{d y}{d x}=y \Longrightarrow \frac{d s}{d r}=\frac{1}{r}
$$

- integrate:

$$
s=\int \frac{1}{r} d r=\ln r+C
$$

- change back:

$$
x=\ln y+C
$$

- solve:

$$
y=C e^{x}
$$

Another example of "magic" coordinates

Another example of "magic" coordinates

- Example: $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$

Another example of "magic" coordinates

- Example: $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$

Another example of "magic" coordinates

- Example: $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$
- a not-so-obvious choice: $r=\frac{y}{x}$ and $s=-\frac{1}{x}$

Another example of "magic" coordinates

- Example: $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$
- a not-so-obvious choice: $r=\frac{y}{x}$ and $s=-\frac{1}{x}$
- change coordinates:

$$
\frac{d s}{d r}=\frac{d\left(-\frac{1}{x}\right)}{d\left(\frac{y}{x}\right)}=\ldots=\frac{1}{r^{2}}
$$

Another example of "magic" coordinates

- Example: $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$
- a not-so-obvious choice: $r=\frac{y}{x}$ and $s=-\frac{1}{x}$
- change coordinates:

$$
\frac{d s}{d r}=\frac{d\left(-\frac{1}{x}\right)}{d\left(\frac{y}{x}\right)}=\ldots=\frac{1}{r^{2}}
$$

- change coordinates:

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}} \Longrightarrow \frac{d s}{d r}=\frac{1}{r^{2}}
$$

- change coordinates:

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}} \Longrightarrow \frac{d s}{d r}=\frac{1}{r^{2}}
$$

- integrate:

$$
s=\int \frac{1}{r^{2}} d r=-\frac{1}{r}+C
$$

- change coordinates:

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}} \Longrightarrow \frac{d s}{d r}=\frac{1}{r^{2}}
$$

- integrate:

$$
s=\int \frac{1}{r^{2}} d r=-\frac{1}{r}+C
$$

- change back:

$$
-\frac{1}{x}=-\frac{x}{y}+C
$$

- change coordinates:

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}} \Longrightarrow \frac{d s}{d r}=\frac{1}{r^{2}}
$$

- integrate:

$$
s=\int \frac{1}{r^{2}} d r=-\frac{1}{r}+C
$$

- change back:

$$
-\frac{1}{x}=-\frac{x}{y}+C
$$

- solve:

$$
y=\frac{x^{2}}{1+C x}
$$

- change coordinates:

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}} \Longrightarrow \frac{d s}{d r}=\frac{1}{r^{2}}
$$

- integrate:

$$
s=\int \frac{1}{r^{2}} d r=-\frac{1}{r}+C
$$

- change back:

$$
-\frac{1}{x}=-\frac{x}{y}+C
$$

- solve:

$$
y=\frac{x^{2}}{1+C x}
$$

- Question: how do we come up with $r=\frac{y}{x}$ and $s=-\frac{1}{x}$?
- change coordinates:

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}} \Longrightarrow \frac{d s}{d r}=\frac{1}{r^{2}}
$$

- integrate:

$$
s=\int \frac{1}{r^{2}} d r=-\frac{1}{r}+C
$$

- change back:

$$
-\frac{1}{x}=-\frac{x}{y}+C
$$

- solve:

$$
y=\frac{x^{2}}{1+C x}
$$

- Question: how do we come up with $r=\frac{y}{x}$ and $s=-\frac{1}{x}$?
- Answer: symmetry!

Transforming the plane

Transforming the plane

- define a mapping T of the plane to itself

Transforming the plane

- define a mapping T of the plane to itself
- Example: reflection across the y-axis:

Transforming the plane

- define a mapping T of the plane to itself
- Example: reflection across the y-axis:

Transforming the plane

- define a mapping T of the plane to itself
- Example: reflection across the y-axis:

Transforming the plane

- define a mapping T of the plane to itself
- Example: reflection across the y-axis:

- denote this

$$
(\hat{x}, \hat{y})=T(x, y)=(-x, y)
$$

Transformation flows

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
(\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y)
$$

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
\begin{aligned}
& (\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y) \\
& (\hat{x}, \hat{y})=(x, y+\epsilon)
\end{aligned}
$$

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
\begin{aligned}
& (\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y) \\
& (\hat{x}, \hat{y})=(x, y+\epsilon) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, y\right)
\end{aligned}
$$

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
\begin{aligned}
& (\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y) \\
& (\hat{x}, \hat{y})=(x, y+\epsilon) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{\epsilon} y\right)
\end{aligned}
$$

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
\begin{aligned}
& (\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y) \\
& (\hat{x}, \hat{y})=(x, y+\epsilon) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{\epsilon} y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)
\end{aligned}
$$

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
\begin{aligned}
& (\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y) \\
& (\hat{x}, \hat{y})=(x, y+\epsilon) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{\epsilon} y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right) \\
& (\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon x}\right)
\end{aligned}
$$

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
\begin{aligned}
& (\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y) \\
& (\hat{x}, \hat{y})=(x, y+\epsilon) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{\epsilon} y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right) \\
& (\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon x}\right)=\frac{(x, y)}{1-\epsilon x}
\end{aligned}
$$

Transformation flows

- define a one-parameter family of mappings T_{ϵ} that maps the plane to itself for each value of the parameter ϵ
- Examples:

$$
\begin{aligned}
& (\hat{x}, \hat{y})=T_{\epsilon}(x, y)=(x+\epsilon, y) \\
& (\hat{x}, \hat{y})=(x, y+\epsilon) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{\epsilon} y\right) \\
& (\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right) \\
& (\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon x}\right)=\frac{(x, y)}{1-\epsilon x} \\
& (\hat{x}, \hat{y})=(x \cos \epsilon-y \sin \epsilon, x \sin \epsilon+y \cos \epsilon)
\end{aligned}
$$

Lie group structure

- each of these transformation flows has certain algebraic properties:

$$
\begin{aligned}
T_{0} & =\mathrm{ld} \\
T_{\epsilon} \circ T_{\delta} & =T_{\epsilon+\delta} \\
T_{\epsilon}^{-1} & =T_{-\epsilon}
\end{aligned}
$$

Lie group structure

- each of these transformation flows has certain algebraic properties:

$$
\begin{aligned}
T_{0} & =\mathrm{ld} \\
T_{\epsilon} \circ T_{\delta} & =T_{\epsilon+\delta} \\
T_{\epsilon}^{-1} & =T_{-\epsilon}
\end{aligned}
$$

- so each of these is a group under composition

Lie group structure

- each of these transformation flows has certain algebraic properties:

$$
\begin{aligned}
T_{0} & =\mathrm{ld} \\
T_{\epsilon} \circ T_{\delta} & =T_{\epsilon+\delta} \\
T_{\epsilon}^{-1} & =T_{-\epsilon}
\end{aligned}
$$

- so each of these is a group under composition
- each flow is also "nice" as a function of ϵ

Lie group structure

- each of these transformation flows has certain algebraic properties:

$$
\begin{aligned}
T_{0} & =\mathrm{ld} \\
T_{\epsilon} \circ T_{\delta} & =T_{\epsilon+\delta} \\
T_{\epsilon}^{-1} & =T_{-\epsilon}
\end{aligned}
$$

- so each of these is a group under composition
- each flow is also "nice" as a function of ϵ
- so each is a one-parameter group of transformations that is "nice" as a function of ϵ

Lie group structure

- each of these transformation flows has certain algebraic properties:

$$
\begin{aligned}
T_{0} & =\mathrm{ld} \\
T_{\epsilon} \circ T_{\delta} & =T_{\epsilon+\delta} \\
T_{\epsilon}^{-1} & =T_{-\epsilon}
\end{aligned}
$$

- so each of these is a group under composition
- each flow is also "nice" as a function of ϵ
- so each is a one-parameter group of transformations that is "nice" as a function of ϵ
- these are called one-parameter Lie groups

Lie group structure

- each of these transformation flows has certain algebraic properties:

$$
\begin{aligned}
T_{0} & =\mathrm{ld} \\
T_{\epsilon} \circ T_{\delta} & =T_{\epsilon+\delta} \\
T_{\epsilon}^{-1} & =T_{-\epsilon}
\end{aligned}
$$

- so each of these is a group under composition
- each flow is also "nice" as a function of ϵ
- so each is a one-parameter group of transformations that is "nice" as a function of ϵ
- these are called one-parameter Lie groups
- now ready to define symmetries of geometric objects

Symmetries of a curve

- look at the effect of a transformation flow on a geometric object

Symmetries of a curve

- look at the effect of a transformation flow on a geometric object
- Example: What happens to the unit circle under each of the previous transformation flows?

Symmetries of a curve

- look at the effect of a transformation flow on a geometric object
- Example: What happens to the unit circle under each of the previous transformation flows?
- under most of them, the circle is not mapped to itself

Symmetries of a curve

- look at the effect of a transformation flow on a geometric object
- Example: What happens to the unit circle under each of the previous transformation flows?
- under most of them, the circle is not mapped to itself
- the circle is mapped to itself for rotation through any angle ϵ

Symmetries of a curve

- look at the effect of a transformation flow on a geometric object
- Example: What happens to the unit circle under each of the previous transformation flows?
- under most of them, the circle is not mapped to itself
- the circle is mapped to itself for rotation through any angle ϵ
- the circle has a symmetry for each angle ϵ so the circle has a one-parameter symmetry flow (in this case, a one-parameter Lie symmetry)

Symmetries of a curve

- look at the effect of a transformation flow on a geometric object
- Example: What happens to the unit circle under each of the previous transformation flows?
- under most of them, the circle is not mapped to itself
- the circle is mapped to itself for rotation through any angle ϵ
- the circle has a symmetry for each angle ϵ so the circle has a one-parameter symmetry flow (in this case, a one-parameter Lie symmetry)
- in general, a geometric object in the plane has a symmetry flow (or a Lie symmetry) if there is a "nice" transformation flow of the plane that maps that object to itself

First-order differential equations as geometric objects

First-order differential equations as geometric objects

- geometric view of a first-order ODE as a slope field.

First-order differential equations as geometric objects

- geometric view of a first-order ODE as a slope field.
- Examples:

First-order differential equations as geometric objects

- geometric view of a first-order ODE as a slope field.
- Examples:

First-order differential equations as geometric objects

- geometric view of a first-order ODE as a slope field.
- Examples:

$$
\frac{d y}{d x}=y
$$

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}
$$

First-order differential equations as geometric objects

- geometric view of a first-order ODE as a slope field.
- Examples:

$$
\frac{d y}{d x}=y
$$

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}
$$

- to understand how a slope field transforms, first look at how slopes transform

Effect of a transformation on slopes

Effect of a transformation on slopes

- Example: translation in x

Effect of a transformation on slopes

- Example: translation in x
- each point is mapped by $(\hat{x}, \hat{y})=(x+\epsilon, y)$

Effect of a transformation on slopes

- Example: translation in x
- each point is mapped by $(\hat{x}, \hat{y})=(x+\epsilon, y)$
- each tangent line segment at (x, y) is mapped to a tangent line segment at (\hat{x}, \hat{y})

Effect of a transformation on slopes

- Example: translation in x
- each point is mapped by $(\hat{x}, \hat{y})=(x+\epsilon, y)$
- each tangent line segment at (x, y) is mapped to a tangent line segment at (\hat{x}, \hat{y})
y

(x, y)

Effect of a transformation on slopes

- Example: translation in x
- each point is mapped by $(\hat{x}, \hat{y})=(x+\epsilon, y)$
- each tangent line segment at (x, y) is mapped to a tangent line segment at (\hat{x}, \hat{y})
y

Effect of a transformation on slopes

- Example: translation in x
- each point is mapped by $(\hat{x}, \hat{y})=(x+\epsilon, y)$
- each tangent line segment at (x, y) is mapped to a tangent line segment at (\hat{x}, \hat{y})

- each transformed tangent line segment has slope \hat{m} that is the same as the original slope m so

$$
(\hat{x}, \hat{y}, \hat{m})=T_{\epsilon}(x, y, m)=(x+\epsilon, y, m)
$$

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction
- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- scaling in x will scale run and have no effect on rise so
- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- scaling in x will scale run and have no effect on rise so

$$
\hat{m}=\frac{\text { rise }}{\text { rûn }}
$$

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- scaling in x will scale run and have no effect on rise so

$$
\hat{m}=\frac{\text { rise }}{\text { rûn }}=\frac{\text { rise }}{e^{\epsilon} \text { run }}
$$

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- scaling in x will scale run and have no effect on rise so

$$
\hat{m}=\frac{\text { rise }}{\text { rûn }}=\frac{\text { rise }}{e^{\epsilon} \text { run }}=e^{-\epsilon} \frac{\text { rise }}{\text { run }}
$$

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- scaling in x will scale run and have no effect on rise so

$$
\hat{m}=\frac{\text { rise }}{\text { rûn }}=\frac{\text { rise }}{e^{\epsilon} \text { run }}=e^{-\epsilon} \frac{\text { rise }}{\text { run }}=e^{-\epsilon} m
$$

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- scaling in x will scale run and have no effect on rise so

$$
\hat{m}=\frac{\text { rise }}{\text { rûn }}=\frac{\text { rise }}{e^{\epsilon} \text { run }}=e^{-\epsilon} \frac{\text { rise }}{\text { run }}=e^{-\epsilon} m
$$

- so

$$
(\hat{x}, \hat{y}, \hat{m})=T_{\epsilon}(x, y, m)=\left(e^{\epsilon} x, y, e^{-\epsilon} m\right)
$$

- Example: scaling in $x:(\hat{x}, \hat{y})=T(x, y)=\left(e^{\epsilon} x, y\right)$
- tangent line segments will be scaled in the x-direction

- scaling in x will scale run and have no effect on rise so

$$
\hat{m}=\frac{\text { rise }}{\text { rûn }}=\frac{\text { rise }}{e^{\epsilon} \text { run }}=e^{-\epsilon} \frac{\text { rise }}{\text { run }}=e^{-\epsilon} m
$$

- so
$(\hat{x}, \hat{y}, \hat{m})=T_{\epsilon}(x, y, m)=\left(e^{\epsilon} x, y, e^{-\epsilon} m\right)$

Symmetries of a first-order differential equation

Symmetries of a first-order differential equation

- start with a differential equation $\frac{d y}{d x}=f(x, y)$.

Symmetries of a first-order differential equation

- start with a differential equation $\frac{d y}{d x}=f(x, y)$.
- look at the effect of a transformation T on a slope field

Symmetries of a first-order differential equation

- start with a differential equation $\frac{d y}{d x}=f(x, y)$.
- look at the effect of a transformation T on a slope field
- Example: $\frac{d y}{d x}=y$ under reflection across the x-axis

Symmetries of a first-order differential equation

- start with a differential equation $\frac{d y}{d x}=f(x, y)$.
- look at the effect of a transformation T on a slope field
- Example: $\frac{d y}{d x}=y$ under reflection across the x-axis

Symmetries of a first-order differential equation

- start with a differential equation $\frac{d y}{d x}=f(x, y)$.
- look at the effect of a transformation T on a slope field
- Example: $\frac{d y}{d x}=y$ under reflection across the x-axis

Symmetries of a first-order differential equation

- start with a differential equation $\frac{d y}{d x}=f(x, y)$.
- look at the effect of a transformation T on a slope field
- Example: $\frac{d y}{d x}=y$ under reflection across the x-axis

- T is a symmetry of the differential equation if the slope field maps to itself (so each solution is mapped to a solution)
- our interest is in symmetry under a transformation flow
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x :
- scaling in x :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x :
- scaling in x :
- translation in y :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x :
- scaling in x :
- translation in y :
- scaling in y :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x :
- translation in y :
- scaling in y :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y :
- scaling in y :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y : a symmetry flow
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y : a symmetry flow
- Example: explore $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$ under various transformation flows
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y : a symmetry flow
- Example: explore $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$ under various transformation flows
- scaling in y :
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y : a symmetry flow
- Example: explore $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$ under various transformation flows
- scaling in y :
- projective transformation $T_{\epsilon}(x, y)=\frac{(x, y)}{1-\epsilon x}$:
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y : a symmetry flow
- Example: explore $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$ under various transformation flows
- scaling in y : not a symmetry flow
- projective transformation $T_{\epsilon}(x, y)=\frac{(x, y)}{1-\epsilon x}$:
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y : a symmetry flow
- Example: explore $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$ under various transformation flows
- scaling in y : not a symmetry flow
- projective transformation $T_{\epsilon}(x, y)=\frac{(x, y)}{1-\epsilon X}$: $\begin{array}{r}\text { a symmetry } \\ \text { flow }\end{array}$
- our interest is in symmetry under a transformation flow
- Example: explore $\frac{d y}{d x}=y$ under various transformation flows
- translation in x : a symmetry flow
- scaling in x : not a symmetry flow
- translation in y : not a symmetry flow
- scaling in y : a symmetry flow
- Example: explore $\frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{3}}$ under various transformation flows
- scaling in y : not a symmetry flow
- projective transformation $T_{\epsilon}(x, y)=\frac{(x, y)}{1-\epsilon x}$: $\begin{gathered}\text { a symmetry } \\ \text { flow }\end{gathered}$
- before working with symmetries of a differential equation, look at a convenient way to picture a transformation flow

Visualizing a transformation flow

Visualizing a transformation flow

- have looked at how a grid of points moves

Visualizing a transformation flow

- have looked at how a grid of points moves
- can also look at paths traced out by points

Visualizing a transformation flow

- have looked at how a grid of points moves
- can also look at paths traced out by points
- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

Visualizing a transformation flow

- have looked at how a grid of points moves
- can also look at paths traced out by points
- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

Visualizing a transformation flow

- have looked at how a grid of points moves
- can also look at paths traced out by points
- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

Visualizing a transformation flow

- have looked at how a grid of points moves
- can also look at paths traced out by points
- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

- denote the tangent vector field $\vec{X}=(\xi, \eta)$

Computing the tangent vector field

Computing the tangent vector field

- the tangent vector field is given by

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

Computing the tangent vector field

- the tangent vector field is given by

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

Computing the tangent vector field

- the tangent vector field is given by

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

Computing the tangent vector field

- the tangent vector field is given by

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

$$
\begin{aligned}
\vec{X} & =\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0} \\
& =\left.\left(e^{\epsilon} x,-e^{-\epsilon} y\right)\right|_{\epsilon=0}
\end{aligned}
$$

Computing the tangent vector field

- the tangent vector field is given by

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

$$
\begin{aligned}
\vec{X} & =\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0} \\
& =\left.\left(e^{\epsilon} x,-e^{-\epsilon} y\right)\right|_{\epsilon=0} \\
& =(x,-y)
\end{aligned}
$$

Computing the tangent vector field

- the tangent vector field is given by

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

- Example: $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-\epsilon} y\right)$

$$
\begin{aligned}
\vec{X} & =\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0} \\
& =\left.\left(e^{\epsilon} x,-e^{-\epsilon} y\right)\right|_{\epsilon=0} \\
& =(x,-y)
\end{aligned}
$$

- Example: $(\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon x}\right)$
- Example: $(\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon X}\right)$

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}
$$

- Example: $(\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon X}\right)$

$$
\vec{x}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}=\left.\left(\frac{x^{2}}{(1-\epsilon x)^{2}}, \frac{x y}{(1-\epsilon x)^{2}}\right)\right|_{\epsilon=0}
$$

- Example: $(\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon X}\right)$

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}=\left.\left(\frac{x^{2}}{(1-\epsilon x)^{2}}, \frac{x y}{(1-\epsilon x)^{2}}\right)\right|_{\epsilon=0}=\left(x^{2}, x y\right)
$$

- Example: $(\hat{x}, \hat{y})=\left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon X}\right)$

$$
\vec{X}=\left.\left(\frac{d \hat{x}}{d \epsilon}, \frac{d \hat{y}}{d \epsilon}\right)\right|_{\epsilon=0}=\left.\left(\frac{x^{2}}{(1-\epsilon x)^{2}}, \frac{x y}{(1-\epsilon x)^{2}}\right)\right|_{\epsilon=0}=\left(x^{2}, x y\right)
$$

- a few more examples of tangent vector fields:
- a few more examples of tangent vector fields:

Scaling in x
$(\hat{x}, \hat{y})=\left(e^{\epsilon} x, y\right)$
$\vec{X}=(x, 0)$

- a few more examples of tangent vector fields:

Using a symmetry to solve the differential equation

Using a symmetry to solve the differential equation

- find coordinates (r, s) in which the symmetry field is vertical and uniform

Using a symmetry to solve the differential equation

- find coordinates (r, s) in which the symmetry field is vertical and uniform

$$
\vec{X}=\left(x^{2}, x y\right)
$$

Using a symmetry to solve the differential equation

- find coordinates (r, s) in which the symmetry field is vertical and uniform

Using a symmetry to solve the differential equation

- find coordinates (r, s) in which the symmetry field is vertical and uniform

- in the new coordinates, differential equation reduces to an antiderivative problem since symmetry maps solutions to solutions by translation in the dependent variable
- Example: translation in $\mathrm{x}: \vec{X}=(1,0)$
－Example：translation in $\mathrm{x}: \vec{X}=(1,0)$

- Example: translation in $\mathrm{x}: \vec{X}=(1,0)$
- from the geometry, can see that choosing $r=y, s=x$ works

- Example: translation in $\mathrm{x}: \vec{X}=(1,0)$
- from the geometry, can see that choosing $r=y, s=x$ works

- Example: translation in $\mathrm{x}: \vec{X}=(1,0)$
- from the geometry, can see that choosing $r=y, s=x$ works

- this is a symmetry flow for $\frac{d y}{d x}=y$
- Example: translation in $\mathrm{x}: \vec{X}=(1,0)$
- from the geometry, can see that choosing $r=y, s=x$ works

- this is a symmetry flow for $\frac{d y}{d x}=y$
- in these "magic coordinates", this ODE becomes $\frac{d s}{d r}=\frac{1}{r}$
- Example: scaling in $y: \vec{X}=(0, y)$
- Example: scaling in $y: \vec{X}=(0, y)$

- Example: scaling in $y: \vec{X}=(0, y)$
- from the geometry, see that $r=x$ and s is some function of y; a choice that works is $s=\ln y$

- Example: scaling in $y: \vec{X}=(0, y)$
- from the geometry, see that $r=x$ and s is some function of y; a choice that works is $s=\ln y$

- Example: scaling in $y: \vec{X}=(0, y)$
- from the geometry, see that $r=x$ and s is some function of y; a choice that works is $s=\ln y$

- this is also a symmetry flow for $\frac{d y}{d x}=y$ so can now transform the differential equation to the new coordinates

Finding "magic" coordinates

- choose $r(x, y)$ so that $r=$ constant curves are tangent to $\vec{X}=(\xi, \eta)$

Finding "magic" coordinates

- choose $r(x, y)$ so that $r=$ constant curves are tangent to $\vec{X}=(\xi, \eta)$
- Example: $\vec{X}=\left(x^{2}, x y\right)$

Finding "magic" coordinates

- choose $r(x, y)$ so that $r=$ constant curves are tangent to $\vec{X}=(\xi, \eta)$
- Example: $\vec{X}=\left(x^{2}, x y\right)$

Finding "magic" coordinates

- choose $r(x, y)$ so that $r=$ constant curves are tangent to $\vec{X}=(\xi, \eta)$
- Example: $\vec{X}=\left(x^{2}, x y\right)$

Finding "magic" coordinates

- choose $r(x, y)$ so that $r=$ constant curves are tangent to $\vec{X}=(\xi, \eta)$
- Example: $\vec{X}=\left(x^{2}, x y\right)$

- equivalent to choosing $r(x, y)$ so that the derivative in the direction of \vec{X} is 0 :

Finding "magic" coordinates

- choose $r(x, y)$ so that $r=$ constant curves are tangent to $\vec{X}=(\xi, \eta)$
- Example: $\vec{X}=\left(x^{2}, x y\right)$

- equivalent to choosing $r(x, y)$ so that the derivative in the direction of \vec{X} is 0 :

$$
\vec{x} \cdot \vec{\nabla} r=\xi \frac{\partial r}{\partial x}+\eta \frac{\partial r}{\partial y}=0
$$

- choose $s(x, y)$ so that $s=$ constant curves are nowhere tangent to $r=$ constant curves and the derivative in the direction of \vec{X} is uniform:

$$
\vec{X} \cdot \vec{\nabla} s=\xi \frac{\partial s}{\partial x}+\eta \frac{\partial s}{\partial y}=1
$$

- choose $s(x, y)$ so that $s=$ constant curves are nowhere tangent to $r=$ constant curves and the derivative in the direction of \vec{X} is uniform:

$$
\vec{X} \cdot \vec{\nabla} s=\xi \frac{\partial s}{\partial x}+\eta \frac{\partial s}{\partial y}=1
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$

- choose $s(x, y)$ so that $s=$ constant curves are nowhere tangent to $r=$ constant curves and the derivative in the direction of \vec{X} is uniform:

$$
\vec{X} \cdot \vec{\nabla} s=\xi \frac{\partial s}{\partial x}+\eta \frac{\partial s}{\partial y}=1
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$

- choose $s(x, y)$ so that $s=$ constant curves are nowhere tangent to $r=$ constant curves and the derivative in the direction of \vec{X} is uniform:

$$
\vec{X} \cdot \vec{\nabla} s=\xi \frac{\partial s}{\partial x}+\eta \frac{\partial s}{\partial y}=1
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$

- choose $s(x, y)$ so that $s=$ constant curves are nowhere tangent to $r=$ constant curves and the derivative in the direction of \vec{X} is uniform:

$$
\vec{X} \cdot \vec{\nabla} s=\xi \frac{\partial s}{\partial x}+\eta \frac{\partial s}{\partial y}=1
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$

- looks intimidating but not so bad in practice since need only a specific solution rather than the general solution
- Example: $\vec{X}=\left(x^{2}, x y\right)$
- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by
- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y}
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y} \Longrightarrow \frac{d x}{x}=\frac{d y}{y}
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y} \Longrightarrow \frac{d x}{x}=\frac{d y}{y} \Longrightarrow \frac{y}{x}=\text { constant }
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y} \Longrightarrow \frac{d x}{x}=\frac{d y}{y} \Longrightarrow \frac{y}{x}=\text { constant so } r=\frac{y}{x} \text { works }
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y} \Longrightarrow \frac{d x}{x}=\frac{d y}{y} \Longrightarrow \frac{y}{x}=\text { constant so } r=\frac{y}{x} \text { works }
$$

- solve bottom equation by looking for s depending only on x so

$$
x^{2} \frac{\partial s}{\partial x}+x y \cdot 0=1
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y} \Longrightarrow \frac{d x}{x}=\frac{d y}{y} \Longrightarrow \frac{y}{x}=\text { constant so } r=\frac{y}{x} \text { works }
$$

- solve bottom equation by looking for s depending only on x so

$$
x^{2} \frac{\partial s}{\partial x}+x y \cdot 0=1 \Longrightarrow \frac{\partial s}{\partial x}=\frac{1}{x^{2}}
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y} \Longrightarrow \frac{d x}{x}=\frac{d y}{y} \Longrightarrow \frac{y}{x}=\text { constant so } r=\frac{y}{x} \text { works }
$$

- solve bottom equation by looking for s depending only on x so

$$
x^{2} \frac{\partial s}{\partial x}+x y \cdot 0=1 \Longrightarrow \frac{\partial s}{\partial x}=\frac{1}{x^{2}} \Longrightarrow s=-\frac{1}{x}
$$

- Example: $\vec{X}=\left(x^{2}, x y\right)$
- must find a solution to

$$
\begin{aligned}
& x^{2} \frac{\partial r}{\partial x}+x y \frac{\partial r}{\partial y}=0 \\
& x^{2} \frac{\partial s}{\partial x}+x y \frac{\partial s}{\partial y}=1
\end{aligned}
$$

- top equation: r is constant along curves given by

$$
\frac{d x}{x^{2}}=\frac{d y}{x y} \Longrightarrow \frac{d x}{x}=\frac{d y}{y} \Longrightarrow \frac{y}{x}=\text { constant so } r=\frac{y}{x} \text { works }
$$

- solve bottom equation by looking for s depending only on x so

$$
x^{2} \frac{\partial s}{\partial x}+x y \cdot 0=1 \Longrightarrow \frac{\partial s}{\partial x}=\frac{1}{x^{2}} \Longrightarrow s=-\frac{1}{x}
$$

- these are the "magic" coordinates we used at the start

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y
- find a symmetry flow for the differential equation with tangent vector field $\vec{X}=(\xi, \eta)$

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y
- find a symmetry flow for the differential equation with tangent vector field $\vec{X}=(\xi, \eta)$
- for that symmetry flow, find new coordinates r and s so that the tangent vector field is $\vec{X}=(0,1)$

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y
- find a symmetry flow for the differential equation with tangent vector field $\vec{X}=(\xi, \eta)$
- for that symmetry flow, find new coordinates r and s so that the tangent vector field is $\vec{X}=(0,1)$
- in the new coordinates, slopes can vary only in r and not in s since translation in s maps slope field to slope field

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y
- find a symmetry flow for the differential equation with tangent vector field $\vec{X}=(\xi, \eta)$
- for that symmetry flow, find new coordinates r and s so that the tangent vector field is $\vec{X}=(0,1)$
- in the new coordinates, slopes can vary only in r and not in s since translation in s maps slope field to slope field
- thus, in the new coordinates, the differential equation has the form $\frac{d s}{d r}=g(r)$

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y
- find a symmetry flow for the differential equation with tangent vector field $\vec{X}=(\xi, \eta)$
- for that symmetry flow, find new coordinates r and s so that the tangent vector field is $\vec{X}=(0,1)$
- in the new coordinates, slopes can vary only in r and not in s since translation in s maps slope field to slope field
- thus, in the new coordinates, the differential equation has the form $\frac{d s}{d r}=g(r)$
- integrate!

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y
- find a symmetry flow for the differential equation with tangent vector field $\vec{X}=(\xi, \eta)$
- for that symmetry flow, find new coordinates r and s so that the tangent vector field is $\vec{X}=(0,1)$
- in the new coordinates, slopes can vary only in r and not in s since translation in s maps slope field to slope field
- thus, in the new coordinates, the differential equation has the form $\frac{d s}{d r}=g(r)$
- integrate!
- change back to the original coordinates

Review the general plan

- start with a differential equation in the form $\frac{d y}{d x}=f(x, y)$ meaning slopes can vary in both x and y
- find a symmetry flow for the differential equation with tangent vector field $\vec{X}=(\xi, \eta) \quad$ Wait a minute, how do we do that!?
- for that symmetry flow, find new coordinates r and s so that the tangent vector field is $\vec{X}=(0,1)$
- in the new coordinates, slopes can vary only in r and not in s since translation in s maps slope field to slope field
- thus, in the new coordinates, the differential equation has the form $\frac{d s}{d r}=g(r)$
- integrate!
- change back to the original coordinates

Finding the symmetries of a differential equation

Finding the symmetries of a differential equation

- defining condition: $(\hat{x}, \hat{y})=T_{\epsilon}(x, y)$ is a symmetry flow if

$$
\frac{d y}{d x}=f(x, y) \Longrightarrow \frac{d \hat{y}}{d \hat{x}}=f(\hat{x}, \hat{y})
$$

Finding the symmetries of a differential equation

- defining condition: $(\hat{x}, \hat{y})=T_{\epsilon}(x, y)$ is a symmetry flow if

$$
\frac{d y}{d x}=f(x, y) \Longrightarrow \frac{d \hat{y}}{d \hat{x}}=f(\hat{x}, \hat{y})
$$

- strategy: determine the tangent vector field $\vec{X}=(\xi, \eta)$ by linearizing the defining condition

Finding the symmetries of a differential equation

- defining condition: $(\hat{x}, \hat{y})=T_{\epsilon}(x, y)$ is a symmetry flow if

$$
\frac{d y}{d x}=f(x, y) \Longrightarrow \frac{d \hat{y}}{d \hat{x}}=f(\hat{x}, \hat{y})
$$

- strategy: determine the tangent vector field $\vec{X}=(\xi, \eta)$ by linearizing the defining condition
- start with

$$
(\hat{x}, \hat{y})=(x, y)+\epsilon(\xi, \eta)+\text { higher-order terms to be ignored }
$$

Finding the symmetries of a differential equation

- defining condition: $(\hat{x}, \hat{y})=T_{\epsilon}(x, y)$ is a symmetry flow if

$$
\frac{d y}{d x}=f(x, y) \Longrightarrow \frac{d \hat{y}}{d \hat{x}}=f(\hat{x}, \hat{y})
$$

- strategy: determine the tangent vector field $\vec{X}=(\xi, \eta)$ by linearizing the defining condition
- start with

$$
(\hat{x}, \hat{y})=(x, y)+\epsilon(\xi, \eta)+\text { higher-order terms to be ignored }
$$

- substitute into defining condition:

$$
\frac{d(y+\epsilon \eta)}{d(x+\epsilon \xi)}=f(x+\epsilon \xi, y+\epsilon \eta)
$$

Finding the symmetries of a differential equation

- defining condition: $(\hat{x}, \hat{y})=T_{\epsilon}(x, y)$ is a symmetry flow if

$$
\frac{d y}{d x}=f(x, y) \Longrightarrow \frac{d \hat{y}}{d \hat{x}}=f(\hat{x}, \hat{y})
$$

- strategy: determine the tangent vector field $\vec{X}=(\xi, \eta)$ by linearizing the defining condition
- start with

$$
(\hat{x}, \hat{y})=(x, y)+\epsilon(\xi, \eta)+\text { higher-order terms to be ignored }
$$

- substitute into defining condition:

$$
\frac{d(y+\epsilon \eta)}{d(x+\epsilon \xi)}=f(x+\epsilon \xi, y+\epsilon \eta)
$$

- after the dust settles:

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

Finding the symmetries of a differential equation

- defining condition: $(\hat{x}, \hat{y})=T_{\epsilon}(x, y)$ is a symmetry flow if

$$
\frac{d y}{d x}=f(x, y) \Longrightarrow \frac{d \hat{y}}{d \hat{x}}=f(\hat{x}, \hat{y})
$$

- strategy: determine the tangent vector field $\vec{X}=(\xi, \eta)$ by linearizing the defining condition
- start with

$$
(\hat{x}, \hat{y})=(x, y)+\epsilon(\xi, \eta)+\text { higher-order terms to be ignored }
$$

- substitute into defining condition:

$$
\frac{d(y+\epsilon \eta)}{d(x+\epsilon \xi)}=f(x+\epsilon \xi, y+\epsilon \eta)
$$

- after the dust settles:

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- first-order linear PDE for $\xi(x, y)$ and $\eta(x, y)$

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- Example: $\frac{d y}{d x}=y$ so $f(x, y)=y$

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- Example: $\frac{d y}{d x}=y$ so $f(x, y)=y$
- try $\xi=a x+b y+c$ and $\eta=\alpha x+\beta y+\gamma$

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- Example: $\frac{d y}{d x}=y$ so $f(x, y)=y$
- try $\xi=a x+b y+c$ and $\eta=\alpha x+\beta y+\gamma$
- substitute:

$$
\alpha+(\beta-a) y-b y^{2}=\alpha x+\beta y+\gamma
$$

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- Example: $\frac{d y}{d x}=y$ so $f(x, y)=y$
- try $\xi=a x+b y+c$ and $\eta=\alpha x+\beta y+\gamma$
- substitute:

$$
\alpha+(\beta-a) y-b y^{2}=\alpha x+\beta y+\gamma
$$

- match coefficients:

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- Example: $\frac{d y}{d x}=y$ so $f(x, y)=y$
- try $\xi=a x+b y+c$ and $\eta=\alpha x+\beta y+\gamma$
- substitute:

$$
\alpha+(\beta-a) y-b y^{2}=\alpha x+\beta y+\gamma
$$

- match coefficients:

$$
\begin{array}{rlrl}
1: & & \alpha=\gamma \\
x: & 0 & =\alpha \\
y: & \beta-a & =\beta \\
y^{2}: & & b & =0
\end{array}
$$

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- Example: $\frac{d y}{d x}=y$ so $f(x, y)=y$
- try $\xi=a x+b y+c$ and $\eta=\alpha x+\beta y+\gamma$
- substitute:

$$
\alpha+(\beta-a) y-b y^{2}=\alpha x+\beta y+\gamma
$$

- match coefficients:

$$
\begin{aligned}
& 1: \quad \alpha=\gamma \\
& x: \quad 0=\alpha \quad \xi=c \\
& y: \quad \beta-a=\beta \\
& y^{2}: \quad b=0
\end{aligned}
$$

$$
\frac{\partial \eta}{\partial x}+f\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right)-f^{2} \frac{\partial \xi}{\partial y}=\frac{\partial f}{\partial x} \xi+\frac{\partial f}{\partial y} \eta
$$

- Example: $\frac{d y}{d x}=y$ so $f(x, y)=y$
- try $\xi=a x+b y+c$ and $\eta=\alpha x+\beta y+\gamma$
- substitute:

$$
\alpha+(\beta-a) y-b y^{2}=\alpha x+\beta y+\gamma
$$

- match coefficients:

$$
\begin{aligned}
& 1: \quad \alpha=\gamma \\
& x: \quad 0=\alpha \quad \xi=c \\
& y: \quad \beta-a=\beta \quad \Longrightarrow \quad \eta=\beta y \\
& y^{2}: \quad b=0
\end{aligned}
$$

- so $\vec{X}=(1,0)$ and $\vec{X}=(0, y)$ are symmetry vector fields

Topics for another time

- Classifying first-order ODEs by symmetry

Topics for another time

- Classifying first-order ODEs by symmetry
- Symmetries of higher-order ODEs

Topics for another time

- Classifying first-order ODEs by symmetry
- Symmetries of higher-order ODEs
- Symmetries of PDEs

Topics for another time

- Classifying first-order ODEs by symmetry
- Symmetries of higher-order ODEs
- Symmetries of PDEs
- Finding invariant solutions (example: fundamental solution for the heat equation)

Topics for another time

- Classifying first-order ODEs by symmetry
- Symmetries of higher-order ODEs
- Symmetries of PDEs
- Finding invariant solutions (example: fundamental solution for the heat equation)
- Algebraic structure of symmetries: Lie groups and Lie algebras

Topics for another time

- Classifying first-order ODEs by symmetry
- Symmetries of higher-order ODEs
- Symmetries of PDEs
- Finding invariant solutions (example: fundamental solution for the heat equation)
- Algebraic structure of symmetries: Lie groups and Lie algebras
- Variational symmetries

Topics for another time

- Classifying first-order ODEs by symmetry
- Symmetries of higher-order ODEs
- Symmetries of PDEs
- Finding invariant solutions (example: fundamental solution for the heat equation)
- Algebraic structure of symmetries: Lie groups and Lie algebras
- Variational symmetries
- Nonclassical symmetries

A few references

A few references

Peter Hydon, Symmetry Methods for Differential Equations: A Beginner's Guide, Cambridge, 2000.

A few references

Peter Hydon, Symmetry Methods for Differential Equations: A Beginner's Guide, Cambridge, 2000.

Peter Olver, Applications of Lie Groups to Differential Equations 2nd ed., Springer, 1993.

