More problems on logic

Each of the following problems involves the definition of a type of function. Each definition is stated as it might appear in a typical calculus text. You will be rewriting the defining property using the quantifiers \forall and \exists. Note that the quantification is not always explicit in the given definition. The universal set will be the domain of the function f in the statement. Use D to denote the domain of the function f.

1. Definition: A function f is even if $f(x)=f(-x)$ for all x in the domain of f.
(a) Write the defining property as a quantified statement.
(b) Prove that $f(x)=x^{2}$ is even.
(c) Write the negation of the property that defines even.
(d) Prove that $f(x)=x^{3}$ is not even.
2. Definition: A function f is periodic if for some number $p>0, f(x+p)=f(x)$ for all x in the domain of f.
(a) Write the defining property as a quantified statement.
(b) Prove that $f(x)=\sin x$ is periodic. (You can assume that the reader knows all of the standard trigonometric identites.)
(c) Write the negation of the property that defines periodic.
(d) Prove that $f(x)=x$ is not periodic.
3. Definition: A function f is decreasing if $f(x)<f(y)$ whenever $x>y$.
(a) Write the defining property as a quantified statement.
(b) Prove that $f(x)=-x^{3}$ is decreasing.
(c) Write the negation of the property that defines decreasing.
(d) Prove that $f(x)=x^{2}$ is not decreasing.
4. Definition: A function f is one-to-one if $x=y$ whenever $f(x)=f(y)$.
(a) Write the defining property as a quantified statement.
(b) Prove that $f(x)=-x^{3}$ is one-to-one.
(c) Write the negation of the property that defines one-to-one.
(d) Prove that $f(x)=x^{2}$ is not one-to-one.
