Problems on logic

1. For each of the following, determine the truth value of the given statement when p and q are true and r is false.
(a) $\sim(p \Rightarrow q)$
(b) $(\sim p) \Rightarrow r$
(c) $p \Rightarrow(r \Rightarrow q)$
2. Suppose $p \Rightarrow q$ is false. Determine the truth value of $\sim(p \wedge q)) \Rightarrow q$.
3. For each of the following, choose specific statements for p, q, and r so that the given statement is true. Also choose a different set of specific statements for p, q, and r so that the given statement is false.
(a) $(\sim(p \wedge q)) \Rightarrow r$
(b) $r \Rightarrow(p \vee q)$
4. For each of the following, construct a truth table to show that the given statements are logically equivalent.
(a) $\sim(p \vee q) \quad \longleftrightarrow \quad(\sim p) \wedge(\sim q)$
(b) $p \Rightarrow q \quad \longleftrightarrow \quad \sim(p \wedge(\sim q))$
(c) $p \vee q \quad \longleftrightarrow \quad(\sim p) \Rightarrow q$
5. A tautology is a statement that is true under all conditions. Construct a truth table to show that $p \vee(\sim p)$ is a tautology.
6. Construct a truth table to show that

$$
[(p \Rightarrow q) \wedge(q \Rightarrow r)] \Rightarrow(p \Rightarrow r)
$$

is a tautology. Note that we did part of this in class but failed to consider all possible combinations of truth values for p, q, and r. You will need 8 rows in your truth table.
7. A contradiction is a statement that is false under all conditions. Construct a truth table to show that $p \wedge(\sim p)$ is a contradiction.

