Phase portraits for linear systems with real nonzero eigenvalues

For each of the following,

- construct the general solution of the system using the given eigenstuff.
- sketch a phase portrait using the general solution

1. $\frac{d \vec{Y}}{d t}=A \vec{Y}$ where $A=\left[\begin{array}{rr}1 & -2 \\ 1 & 4\end{array}\right]$
eigenvalue $\lambda_{1}=2$ with eigenvector $\vec{v}_{1}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$
Eigenstuff for A :
eigenvalue $\lambda_{2}=3$ with eigenvector $\vec{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
2. $\frac{d \vec{Y}}{d t}=A \vec{Y}$ where $A=\left[\begin{array}{ll}3 & -1 \\ 5 & -3\end{array}\right]$
eigenvalue $\lambda_{1}=-2$ with eigenvector $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$
Eigenstuff for A :
eigenvalue $\lambda_{2}=2$ with eigenvector $\vec{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
3. $\frac{d \vec{Y}}{d t}=A \vec{Y}$ where $A=\left[\begin{array}{ll}-5 & 4 \\ -2 & 1\end{array}\right]$
eigenvalue $\lambda_{1}=-3$ with eigenvector $\vec{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Eigenstuff for A :
eigenvalue $\lambda_{2}=-1$ with eigenvector $\vec{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
