What is a solution?

Definition:

A solution of the initial value problem

$$
\frac{d y}{d t}=f(t, y) \quad \text { with } y=y_{0} \text { for } t=t_{0}
$$

is a differentiable function defined on an interval (α, β) containing t_{0} that satisfies both the differential equation and the initial condition.

Note:

To distinguish between the unknown y in the problem statement and a specific candidate for this unknown, we might write $y=\phi(t)$ and then require

$$
\phi^{\prime}(t)=f(t, \phi(t)) \quad \text { for all } t \text { in }(\alpha, \beta) \quad \text { with } \quad \phi\left(t_{0}\right)=y_{0}
$$

What is a solution?

Example:

$$
\frac{d y}{d t}=y \quad \text { with } y=5 \text { for } t=0
$$

- One solution is $y=5 e^{t}$ for t in $(-1,1)$.
- Another solution is $y=5 e^{t}$ for t in $(-\infty, \infty)$.
- We say that this second solution is an extension of the first solution.
- In fact, it is the maximal extension since the domain cannot be extended further.

An existence-uniqueness theorem: informal

Theorem (informal):

If f and $\partial f / \partial y$ are continuous for all points in the ty-plane near $\left(t_{0}, y_{0}\right)$, then there is a unique solution to the initial value problem

$$
\frac{d y}{d t}=f(t, y) \quad \text { with } \quad y\left(t_{0}\right)=y_{0} .
$$

Notes:

- Need to be clear on what "points near $\left(t_{0}, y_{0}\right)$ " means.
- Need to be clear on domain of the solution.
- For existence, need only continuity of f. For uniqueness, need continuity of both f and $\partial f / \partial y$.

An existence-uniqueness theorem: precise

Theorem:

If f and $\partial f / \partial y$ are continuous in a rectangle $\{(t, y) \mid a<t<b, c<y<d\}$ containing $\left(t_{0}, y_{0}\right)$, then there is a value $\epsilon>0$ defining an interval $\left(t_{0}-\epsilon, t_{0}+\epsilon\right)$ for which there is a unique solution to the initial value problem

$$
\frac{d y}{d t}=f(t, y) \quad \text { with } \quad y\left(t_{0}\right)=y_{0} .
$$

Note:

- Uniqueness means that if y_{1} and y_{2} are functions defined for ($t_{0}-\epsilon, t_{0}+\epsilon$) and each satisfies the IVP, then

$$
y_{1}(t)=y_{2}(t) \quad \text { for all } t \text { in }\left(t_{0}-\epsilon, t_{0}+\epsilon\right) .
$$

- No guarantee about solution or uniqueness extending beyond the interval $\left(t_{0}-\epsilon, t_{0}+\epsilon\right)$.

