Solutions: Integrating a vector field over a surface

4. Compute $\iint_{S} \vec{F} \cdot d \vec{A}$ where $\vec{F}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and S is the open right circular cylinder of radius 2 and height 6 centered at the origin with axis along the z-axis oriented so that area vectors point outward (i.e., away from the z-axis).

Solution:

In cylindrical coordinates, the cylinder is described by $r=2$ for $0 \leq \theta \leq 2 \pi$ and $-3 \leq z \leq 3$. Expressing cartesian coordinates in terms of cylindrical coordinates (with $r=2$), we have

$$
x=2 \cos \theta \quad y=2 \sin \theta \quad z=z .
$$

Let $d \vec{r}_{1}$ be an infinitesmial displacement with z held constant so $d z=0$ and thus

$$
d \vec{r}_{1}=(-2 \sin \theta \hat{\imath}+2 \cos \theta \hat{\jmath}+0 \hat{k}) d \theta
$$

Let $d \vec{r}_{2}$ be an infinitesmial displacement with θ held constant so $d \theta=0$ and thus

$$
d \vec{r}_{2}=(0 \hat{\imath}+0 \hat{\jmath}+\hat{k}) d z
$$

Now compute

$$
d \vec{A}=d \vec{r}_{1} \times d \vec{r}_{2}=(2 \cos \theta \hat{\imath}+2 \sin \theta \hat{\jmath}+0 \hat{k}) d \theta d z
$$

Note that we can match this result with our geometric intuition that all area element vectors $d \vec{A}$ on this cylinder are horizontal. Along the surface, we have

$$
\vec{F}=2 \cos \theta \hat{\imath}+2 \sin \theta \hat{\jmath}+z \hat{k}
$$

so

$$
\vec{F} \cdot d \vec{A}=4 d \theta d z
$$

Putting together these pieces, we get

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\int_{-3}^{3} \int_{0}^{2 \pi} 4 d \theta d z=4 \int_{-3}^{3} d z \int_{0}^{2 \pi} d \theta=4(6)(2 \pi)=48 \pi
$$

5. Compute $\iint_{S} \vec{F} \cdot d \vec{A}$ where $\vec{F}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and S is the paraboloid $z=x^{2}+y^{2}$ for $0 \leq z \leq 1$ oriented so that area vectors point outward (i.e., away from the z-axis).

Solution:

In cylindrical coordinates, the equation of the paraboloid is $z=r^{2}$. The piece of the paraboloid with $0 \leq z \leq 1$ projects onto the disk of radius 1 centered at the origin in the $z=0$ plane so we have $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 1$. Expressing cartesian coordinates in terms of cylindrical coordinates, we have

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=r^{2} .
$$

Let $d \vec{r}_{1}$ be an infinitesmial displacement with r held constant so $d r=0$ and thus

$$
d \vec{r}_{1}=(-r \sin \theta \hat{\imath}+r \cos \theta \hat{\jmath}+0 \hat{k}) d \theta
$$

Let $d \vec{r}_{2}$ be an infinitesmial displacement with θ held constant so $d \theta=0$ and thus

$$
d \vec{r}_{2}=(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath}+2 r \hat{k}) d r .
$$

Now compute

$$
d \vec{A}=d \vec{r}_{1} \times d \vec{r}_{2}=\left(2 r^{2} \cos \theta \hat{\imath}+2 r^{2} \sin \theta \hat{\jmath}-r \hat{k}\right) d r d \theta .
$$

Note that we can match this result with our geometric intuition that area element vectors $d \vec{A}$ on the paraboloid that are pointing away from the z-axis will have negative \hat{k}-components. Along the surface, we have

$$
\vec{F}=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+r^{2} \hat{k}
$$

so

$$
\vec{F} \cdot d \vec{A}=\left(2 r^{3} \cos ^{2} \theta+2 r^{3} \sin ^{2} \theta-r^{3}\right) d r d \theta=r^{3} d r d \theta .
$$

Putting together these pieces, we get

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\int_{0}^{2 \pi} \int_{0}^{1} r^{3} d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{1} r^{3} d r=(2 \pi)\left(\frac{1}{4}\right)=\frac{\pi}{2}
$$

We could also approach this problem using cartesian coordinates. From $z=$ $x^{2}+y^{2}$, we get $d z=2 x d x+2 y d y$. Let $d \vec{r}_{1}$ be an infinitesmial displacement with x held constant so $d x=0$ and thus

$$
d \vec{r}_{1}=(0 \hat{\imath}+\hat{\jmath}+2 y \hat{k}) d y
$$

Let $d \vec{r}_{2}$ be an infinitesmial displacement with y held constant so $d y=0$ and thus

$$
d \vec{r}_{2}=(\hat{\imath}+0 \hat{\jmath}+2 x \hat{k}) d x .
$$

Now compute

$$
d \vec{A}=d \vec{r}_{1} \times d \vec{r}_{2}=(2 x \hat{\imath}+2 y \hat{\jmath}-\hat{k}) d x d y .
$$

Along the surface, we have

$$
\vec{F}=x \hat{\imath}+y \hat{\jmath}+\left(x^{2}+y^{2}\right) \hat{k}
$$

so

$$
\vec{F} \cdot d \vec{A}=\left(2 x^{2}+2 y^{2}-x^{2}-y^{2}\right) d x d y=\left(x^{2}+y^{2}\right) d x d y .
$$

In cartesian coordinates, the unit disk in the $z=0$ plane onto which the surface projects is described by $-1 \leq x \leq 1$ and $-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}$. Putting together these pieces, we get

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

Perhaps the easiest way to evaluate the iterated integral is to transform to polar coordinates, giving us

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x .=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta
$$

Note that this is exactly the iterated integral we got using the cylindrical coordinates approach. So, the details of evaluating it are identical and we get

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\frac{\pi}{2}
$$

