Vector curve integral problems

For each of the following,

- Sketch the given vector field \vec{F} and the given curve C.
- Use your sketch to determine or estimate the sign of $\int_{C} \vec{F} \cdot d \vec{r}$.
- Compute the value of $\int_{C} \vec{F} \cdot d \vec{r}$.

1. $\vec{F}=x \hat{\imath}+y \hat{\jmath}$
C is the semicircle of radius 1 from $(-1,0)$ to $(1,0)$ with $y \geq 0$

2. $\vec{F}=y \hat{\imath}-x \hat{\jmath}$
C is the semicircle of radius 1 from $(-1,0)$ to $(1,0)$ with $y \geq 0$

Answer: 0

Answer: π
3. $\vec{F}=y \hat{\imath}+x \hat{\jmath}$
C is given by $x=t^{3}$ and $y=t^{2}$ for $t=0$ to $t=2$

Answer: 32
4. $\vec{F}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
C is the helix with constant pitch wrapping 5 times around a (right circular) cylinder of radius 2 and height 20

Answer: 200

Solution:

We can describe the helix using cylindrical coordinates with $r=2$ to get

$$
x=2 \cos \theta \quad y=2 \sin \theta \quad z=\frac{20}{10 \pi} \theta=\frac{2}{\pi} \theta
$$

for $0 \leq \theta \leq 2 \pi$. Note that the helix having constant pitch means that z is proportional to theta; the proportionality constant is determined by the requirement that helix goes up 20 units in 5 wraps. From these, we compute

$$
d x=-2 \sin \theta d \theta \quad d y=2 \cos \theta d \theta \quad d z=\frac{2}{\pi} d \theta
$$

to get

$$
d \vec{r}=\left(-2 \sin \theta \hat{\imath}+2 \cos \theta \hat{\jmath}+\frac{2}{\pi} \hat{k}\right) d \theta
$$

Along the curve, the vector field is

$$
\vec{F}=2 \cos \theta \hat{\imath}+2 \sin \theta \hat{\jmath}+\frac{2}{\pi} \theta \hat{k} .
$$

Dotting these together gives us

$$
\vec{F} \cdot d \vec{r}=\left(-4 \sin \theta \cos \theta+4 \cos \theta \sin \theta+\frac{4}{\pi^{2}} \theta\right) d \theta=\frac{4}{\pi^{2}} \theta d \theta
$$

Putting together the details, we get

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{10 \pi} \frac{4}{\pi^{2}} \theta d \theta=\left.\frac{4}{\pi^{2}} \frac{\theta^{2}}{2}\right|_{0} ^{10 \pi}=200
$$

