Estimating rate of change

The accompanying plot below shows constant temperature T (in Kelvin) level curves as given by the ideal gas law $p V=n R T$ with $n=0.15 \mathrm{~mol}$ and $R=0.082$ $\mathrm{L} \cdot \mathrm{atm} /(\mathrm{mol} \cdot \mathrm{K})$.

1. Use information from the plot to estimate the rate of change in temperature T with respect to change in volume V for $V=0.2 \mathrm{~L}$ and $p=0.2$ atmospheres.
2. Use information from the plot to estimate the rate of change in temperature T with respect to change in pressure p for $V=0.2 \mathrm{~L}$ and $p=0.2$ atmospheres.
3. Repeat Steps 1 and 2 for each of the following (V, p) pairs.
(a) ($0.2 \mathrm{~L}, 0.4 \mathrm{~atm})$
(b) (0.2 L, 0.6 atm$)$
(c) $(0.2 \mathrm{~L}, 0.8 \mathrm{~atm})$
(d) (0.4 L, 0.2 atm$)$
(e) (0.6 L, 0.2 atm$)$
(f) (0.8 L, 0.2 atm$)$
4. Use your previous results to make a plot showing rate of change in temperature T with respect to volume V versus pressure p for $V=0.2 \mathrm{~L}$.
5. Use your previous results to make a plot showing rate of change in temperature T with respect to volume V versus volume V for $p=0.2 \mathrm{~atm}$.
6. Use your previous results to make a plot showing rate of change in temperature T with respect to pressure p versus pressure p for $V=0.2 \mathrm{~L}$.
7. Use your previous results to make a plot showing rate of change in temperature T with respect to pressure p versus volume V for $p=0.2 \mathrm{~atm}$.

