Continuity and limit

Math 280

Spring 2011

Continuity

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"
- $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists and equal to $f\left(x_{0}, y_{0}\right)$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"
- $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists and equal to $f\left(x_{0}, y_{0}\right)$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"
- $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists and equal to $f\left(x_{0}, y_{0}\right)$

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"
- $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists and equal to $f\left(x_{0}, y_{0}\right)$

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$

- "unbroken ???"

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"
- $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists and equal to $f\left(x_{0}, y_{0}\right)$

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$

- "unbroken ???"
- $\lim _{(x, y, z) \rightarrow\left(x_{0}, y_{0}, z_{0}\right)} f(x, y, z)$ exists and equal to $f\left(x_{0}, y_{0}, z_{0}\right)$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"
- $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists and equal to $f\left(x_{0}, y_{0}\right)$

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$

- "unbroken ???"
- $\lim _{(x, y, z) \rightarrow\left(x_{0}, y_{0}, z_{0}\right)} f(x, y, z)$ exists and equal to $f\left(x_{0}, y_{0}, z_{0}\right)$

Continuity

For $f: \mathbb{R} \rightarrow \mathbb{R}$

- "unbroken curve"
- $\lim _{x \rightarrow x_{0}} f(x)$ exists and equal to $f\left(x_{0}\right)$

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- "unbroken surface"
- $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists and equal to $f\left(x_{0}, y_{0}\right)$

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$

- "unbroken ???"
- $\lim _{(x, y, z) \rightarrow\left(x_{0}, y_{0}, z_{0}\right)} f(x, y, z)$ exists and equal to $f\left(x_{0}, y_{0}, z_{0}\right)$

Need precise definition of limit

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?
- How do we compute/evaluate it?

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?
- How do we compute/evaluate it?

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

- conjecture based on table of values

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

What does it mean to say $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$?

Limits for $f: \mathbb{R} \rightarrow \mathbb{R}$

Distinguish between

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

What does it mean to say $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$?

A precise definition

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Target: an open interval centered at L

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Target: an open interval centered at L

Launch pad: an open interval centered at x_{0} with x_{0} taken out

A precise definition

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Target: an open interval centered at L

Launch pad: an open interval centered at x_{0} with x_{0} taken out

Successful launch pad: every input x in the launch pad has an output $f(x)$ in the target

A precise definition

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Definition: L is the limit of f at x_{0} if for every target centered at L, there is a successful launch pad centered at x_{0}.

Traditional phrasing of a precise definition

Brief Verbose Traditional

Traditional phrasing of a precise definition
Brief Verbose Traditional

Brief
Verbose
Traditional
For each target
centered at L

Traditional phrasing of a precise definition
Brief Verbose Traditional

For each target
centered at L
there is a launch
pad centered at x_{0}

Brief	Verbose	Traditional
For each target		
centered at L		
there is a launch		
pad centered at x_{0}		

that is successful.

Brief	Verbose	Traditional
For each target centered at L	For each open interval centered at L	
there is a launch pad centered at x_{0}		

that is successful.

Brief	Verbose	Traditional
For each target centered at L	For each open interval centered at L	
there is a launch		
pad centered at x_{0}	there is an open interval centered at x_{0} with x_{0} removed	
that is successful.		

Brief	Verbose
For each target centered at L	For each open interval centered at L
there is a launch pad centered at x_{0}	there is an open interval centered at x_{0} with x_{0} removed
that is successful.	such that x in the launch pad has $f(x)$ in the target.

Brief	Verbose	Traditional
For each target centered at L	For each open interval centered at L	For each $\epsilon>0$
there is a launch pad centered at x_{0}	there is an open interval centered at x_{0} with x_{0} removed	
that is successful.	such that x in the launch pad has $f(x)$ in the target.	

Brief	Verbose	Traditional
For each target centered at L	For each open interval centered at L	For each $\epsilon>0$
there is a launch pad centered at x_{0}	there is an open interval centered at x_{0} with x_{0} removed	there is a corresponding number $\delta>0$
that is successful.	such that x in the launch pad has $f(x)$ in the target.	

Brief	Verbose	Traditional
For each target centered at L	For each open interval centered at L	For each $\epsilon>0$
there is a launch pad centered at x_{0}	there is an open interval centered at x_{0} with x_{0} removed	there is a corresponding number $\delta>0$
that is successful.	such that x in the launch pad has $f(x)$ in the target.	such that $0<\left\|x-x_{0}\right\|<\delta$ implies $\|f(x)-L\|<\epsilon$.

Traditional phrasing of a precise definition

Brief	Verbose	Traditional
For each target centered at L	For each open interval centered at L	For each $\epsilon>0$
there is a launch pad centered at x_{0}	there is an open interval centered at x_{0} with x_{0} removed	there is a corresponding number $\delta>0$
that is successful.	such that x in the launch pad has $f(x)$ in the target.	such that $0<\left\|x-x_{0}\right\|<\delta$ implies $\|f(x)-L\|<\epsilon$.

Definition: L is the limit of f at x_{0} if for every $\epsilon>0$, there is a corresponding $\delta>0$ such that $0<\left|x-x_{0}\right|<\delta$ implies $|f(x)-L|<\epsilon$.

A precise definition

Definition: L is the limit of f at x_{0} if for every $\epsilon>0$, there is a corresponding $\delta>0$ such that $0<\left|x-x_{0}\right|<\delta$ implies $|f(x)-L|<\epsilon$.

Limits for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Limits for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition: L is the limit of f at $\left(x_{0}, y_{0}\right)$ if for every target centered at L, there is a successful launch pad centered at $\left(x_{0}, y_{0}\right)$.

Limits for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition: L is the limit of f at $\left(x_{0}, y_{0}\right)$ if for every target centered at L, there is a successful launch pad centered at $\left(x_{0}, y_{0}\right)$. Target: an open interval centered at L

Limits for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition: L is the limit of f at $\left(x_{0}, y_{0}\right)$ if for every target centered at L, there is a successful launch pad centered at $\left(x_{0}, y_{0}\right)$. Target: an open interval centered at L

Launch pad: an open disk centered at $\left(x_{0}, y_{0}\right)$ with $\left(x_{0}, y_{0}\right)$ taken out

Limits for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition: L is the limit of f at $\left(x_{0}, y_{0}\right)$ if for every target centered at L, there is a successful launch pad centered at $\left(x_{0}, y_{0}\right)$. Target: an open interval centered at L

Launch pad: an open disk centered at $\left(x_{0}, y_{0}\right)$ with $\left(x_{0}, y_{0}\right)$ taken out

Successful launch pad: every input (x, y) in the launch pad has an output $f(x, y)$ in the target

Limits for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition: L is the limit of f at $\left(x_{0}, y_{0}\right)$ if for every target centered at L, there is a successful launch pad centered at $\left(x_{0}, y_{0}\right)$.

Limits for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition: L is the limit of f at $\left(x_{0}, y_{0}\right)$ if for every target centered at L, there is a successful launch pad centered at $\left(x_{0}, y_{0}\right)$.

