Continuity and limit Math 280

Spring 2011

Continuity and limit

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Continuity and limit

・ロト 《四 》 《 田 》 《 田 》 《 日 》

For $f : \mathbb{R} \to \mathbb{R}$

Continuity and limit

4日 > 4日 > 4 H > 4 H > 4 H > 4 H > 4

For $f : \mathbb{R} \to \mathbb{R}$

• "unbroken curve"

4日 > 4日 > 4 H > 4 H > 4 H > 4 H > 4

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f: \mathbb{R}^2 \to \mathbb{R}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f: \mathbb{R}^2 \to \mathbb{R}$

• "unbroken surface"

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f : \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f : \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f: \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f : \mathbb{R}^3 \to \mathbb{R}$

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f: \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f: \mathbb{R}^3 \to \mathbb{R}$

• "unbroken ???"

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f : \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f: \mathbb{R}^3 \to \mathbb{R}$

- "unbroken ???"
- $\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z)$ exists and equal to $f(x_0,y_0,z_0)$

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f : \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f: \mathbb{R}^3 \to \mathbb{R}$

- "unbroken ???"
- $\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z)$ exists and equal to $f(x_0,y_0,z_0)$

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f: \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f: \mathbb{R}^3 \to \mathbb{R}$

- "unbroken ???"
- $\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z)$ exists and equal to $f(x_0,y_0,z_0)$

Need precise definition of limit

Limits for $f : \mathbb{R} \to \mathbb{R}$

Continuity and limit

・ロト ・ 白 ・ ・ 山 ・ ・ 山 ・ ・ 日 ・ う へ ()・

• What is it?

4日 > 4日 > 4 H > 4 H > 4 H > 4 H > 4

- What is it?
- How do we compute/evaluate it?

- What is it?
- How do we compute/evaluate it?

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim_{x \to 0} \frac{\sin(x)}{x}$

• conjecture based on table of values

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim_{x \to 0} \frac{\sin(x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim_{x \to 0} \frac{\sin(x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim_{x \to 0} \frac{\sin(x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

What does it mean to say
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1?$$

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim_{x \to 0} \frac{\sin(x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

What does it mean to say
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1?$$

Continuity and limit

▲□▶ ▲□▶ ▲三▶ ▲三▶ ○ ● ●

Definition: *L* is the limit of *f* at x_0 if for every target centered at *L*, there is a successful launch pad centered at x_0 .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition: *L* is the limit of *f* at x_0 if for every **target** centered at *L*, there is a successful launch pad centered at x_0 .

Definition: *L* is the limit of *f* at x_0 if for every target centered at *L*, there is a successful **launch pad** centered at x_0 .

Launch pad: an open interval centered at x_0 with x_0 taken out

$$x_0 - \delta$$
 x_0 $x_0 + \delta$

Definition: *L* is the limit of *f* at x_0 if for every target centered at *L*, there is a **successful** launch pad centered at x_0 .

Target: an open interval centered at
$$L$$

$$\underbrace{f(x)}_{L-\epsilon} \qquad f(x)$$

Launch pad: an open interval centered at x_0 with x_0 taken out

$$x_0 - \delta$$
 x_0 $x_0 + \delta$

Successful launch pad: every input x in the launch pad has an output f(x) in the target

Continuity and limit

Continuity and limit

Continuity and limit

Traditional phrasing of a precise definition

	٠	c
к	ru	et

Verbose

Traditional

Continuity and limit

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

Traditional phrasing of a precise definition

Brief	Verbose	Traditional	
For each target			

For each target centered at L

Continuity and limit

<□ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで

Brief	Verbose	Traditional	
For each target centered at <i>L</i>			
there is a launch pad centered at x_0			

Brief	Verbose	Traditional	
For each target centered at <i>L</i>			
there is a launch pad centered at x_0			
that is successful.			

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	
there is a launch pad centered at <i>x</i> 0		
that is successful.		

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	
there is a launch pad centered at x_0	there is an open interval centered at x_0 with x_0 removed	

that is successful.

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	
there is a launch pad centered at x_0	there is an open interval centered at x ₀ with x ₀ removed	
that is successful.	such that x in the launch pad has $f(x)$ in the target.	

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	For each $\epsilon > 0$
there is a launch pad centered at x_0	there is an open interval centered at x ₀ with x ₀ removed	
that is successful.	such that x in the launch pad has $f(x)$ in the target.	

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	For each $\epsilon > 0$
there is a launch pad centered at x_0	there is an open interval centered at x ₀ with x ₀ removed	there is a corresponding number $\delta > 0$
that is successful.	such that x in the launch pad has $f(x)$ in the target.	

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 母 ト ◆ 母 ト

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	For each $\epsilon > 0$
there is a launch pad centered at x_0	there is an open interval centered at x ₀ with x ₀ removed	there is a corresponding number $\delta > 0$
that is successful.	such that x in the launch pad has $f(x)$ in the target.	such that $0 < x - x_0 < \delta$ implies $ f(x) - L < \epsilon$.

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	For each $\epsilon > 0$
there is a launch pad centered at x_0	there is an open interval centered at x ₀ with x ₀ removed	there is a corresponding number $\delta > 0$
that is successful.	such that x in the launch pad has $f(x)$ in the target.	such that $0 < x - x_0 < \delta$ implies $ f(x) - L < \epsilon$.

Definition: *L* is the limit of *f* at x_0 if for every $\epsilon > 0$, there is a corresponding $\delta > 0$ such that $0 < |x - x_0| < \delta$ implies $|f(x) - L| < \epsilon$.

Continuity and limit

A precise definition

Definition: *L* is the limit of *f* at x_0 if for every $\epsilon > 0$, there is a corresponding $\delta > 0$ such that $0 < |x - x_0| < \delta$ implies $|f(x) - L| < \epsilon$.

Continuity and limit

Definition: *L* is the limit of *f* at (x_0, y_0) if for every target centered at *L*, there is a successful launch pad centered at (x_0, y_0) .

Definition: *L* is the limit of *f* at (x_0, y_0) if for every **target** centered at *L*, there is a successful launch pad centered at (x_0, y_0) . **Target**: an open interval centered at *L*

 $\begin{array}{c|c} & & \\ \hline \\ L-\epsilon & L & L+\epsilon \end{array} \qquad \qquad f(x,y)$

Definition: *L* is the limit of *f* at (x_0, y_0) if for every target centered at *L*, there is a successful **launch pad** centered at (x_0, y_0) . Target: an open interval centered at *L*

$$L - \epsilon$$
 $L + \epsilon$ $f(x,y)$

Launch pad: an open disk centered at (x_0, y_0) with (x_0, y_0) taken out

Definition: *L* is the limit of *f* at (x_0, y_0) if for every target centered at *L*, there is a **successful** launch pad centered at (x_0, y_0) . Target: an open interval centered at *L*

$$L - \epsilon$$
 L $L + \epsilon$ $f(x,y)$

Launch pad: an open disk centered at (x_0, y_0) with (x_0, y_0) taken out

Successful launch pad: every input (x, y) in the launch pad has an output f(x, y) in the target

Continuity and limit

Definition: *L* is the limit of *f* at (x_0, y_0) if for every target centered at *L*, there is a successful launch pad centered at (x_0, y_0) .

イロト イポト イヨト イヨト

= nac

Definition: *L* is the limit of *f* at (x_0, y_0) if for every target centered at *L*, there is a successful launch pad centered at (x_0, y_0) .

・ロト ・日 ・ ・ ヨ ・ ・

E> E ∽ Q ()