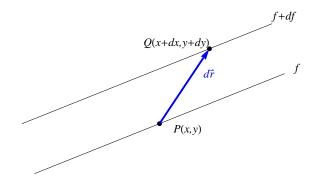
Components of the gradient vector

- start with function $f: \mathbb{R}^2 \to \mathbb{R}$ and point P in the domain where, in a zoomed-in view, the level curve through P and nearby level curves are parallel lines
- define gradient vector $\vec{\nabla} f$ as vector that
 - points in direction of greatest rate of change (so perpendicular to level curve through P)
 - has magnitude $\|\vec{\nabla}f\|$ equal to that greatest rate of change
- introduce cartestian coordinates to have P(x, y)
- consider infinitesimal displacement $d\vec{r} = dx \,\hat{\imath} + dy \,\hat{\jmath}$ consisting of displacements dx and dy in the x and y directions, respectively
- for the displacement $d\vec{r}$, there is a corresponding infinitesimal change df in the function values



• relate df to dx and dy using partial derivatives as

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

ullet note that each term on the right side is a contribution to the change df that has the form

(rate of change in f with respect to change in coordinate) \times (size of change in coordinate)

• factor this using the dot product as

$$df = \left(\frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j}\right) \cdot (dx\,\hat{i} + dy\,\hat{j})$$

• in this product of two vectors, the first vector has information about rate of change and the second vector has information about displacement

• for convenience, name the first vector in the product \overrightarrow{Bob} so have

$$\overrightarrow{\mathrm{Bob}} = \frac{\partial f}{\partial x}\,\hat{\imath} + \frac{\partial f}{\partial y}\,\hat{\jmath}$$

and can write

$$df = \overrightarrow{\text{Bob}} \cdot d\vec{r} \tag{1}$$

Bob

• now argue that $\overrightarrow{\mathrm{Bob}}$ is equal to the gradient vector $\vec{\nabla} f$

di

• start by writing the geometric expression for the dot product in (1) to get

$$df = \|\overrightarrow{\text{Bob}}\| \|d\vec{r}\| \cos \theta$$

where θ is the angle between \overrightarrow{Bob} and $d\vec{r}$

- the rate of change in f for a displacement $d\vec{r}$ is the ratio of df to $||d\vec{r}||$
- dividing through by $||d\vec{r}||$ in the previous relation gives

rate of change in
$$f$$
 for displacement $d\vec{r}$: $\frac{df}{\|d\vec{r}\|} = \|\overrightarrow{\text{Bob}}\| \cos \theta$ (2)

- now consider all displacements $d\vec{r}$ having the same magnitude $||d\vec{r}||$ while allowing the direction to vary so the only variable in (2) is θ
- since $\cos \theta$ has values between -1 and 1, the greatest rate of change is for $\cos \theta = 1$ corresponding to $\theta = 0$
- so, the greatest rate of change is for a displacement in the direction of \overrightarrow{Bob} with magnitude

$$\frac{df}{\|d\vec{r}\|}\bigg|_{\theta=0} = \|\overrightarrow{\mathrm{Bob}}\| \cos 0 = \|\overrightarrow{\mathrm{Bob}}\|(1) = \|\overrightarrow{\mathrm{Bob}}\|$$

- in other words, \overrightarrow{Bob} is a vector that
 - points in direction of greatest rate of change
 - has magnitude equal to that greatest rate of change
- thus, $\overrightarrow{\mathrm{Bob}}$ is equal to the gradient vector $\overrightarrow{\nabla} f$
- recalling the definition of \overrightarrow{Bob} , we have

$$\vec{\nabla}f = \frac{\partial f}{\partial x}\hat{\imath} + \frac{\partial f}{\partial y}\hat{\jmath}$$

- this result gives us a way to compute the components of a gradient vector $\vec{\nabla} f$ if we have a formula for f in terms of cartesian coordinates
- knowing that $\overrightarrow{Bob} = \overrightarrow{\nabla} f$, can relate df to $\overrightarrow{\nabla} f$ by rewriting (1) as

$$df = \vec{\nabla} f \cdot d\vec{r}$$