
MATH 280A Multivariate Calculus Spring 2011

Fundamental theorems of calculus

Note: In each of the following theorems, a hypothesis on continuity of the integrand
is omitted in order to focus on other details.

Fundamental Theorem for Definite Integrals

If F ′(x) = f(x), then

∫ b

a

f(x) dx = F (b)− F (a).

By substituting, we can also write the conclusion as∫ b

a

F ′(x) dx = F (b)− F (a).

Fundamental Theorem for Line Integrals
Let C be a curve that starts at A and ends at B. If ~∇V = ~F , then∫

C

~F · d~r = V (B)− V (A).

By substituting, we can also write the conclusion as∫
C

~∇V · d~r = V (B)− V (A).

Divergence Theorem
Let D be a solid region with the closed surface S as the edge of D and area element
vectors d ~A for S oriented outward. If ~∇ · ~F = f , then∫∫∫

D

f dV =

∫����∫
S

~F · d ~A.

By substituting, we can also write the conclusion as∫∫∫
D

(~∇ · ~F ) dV =

∫����∫
S

~F · d ~A.

Stokes’ Theorem
Let S be a surface with the closed curve C as the edge of S. Orient the area element
vectors d ~A and the curve C to have a right-hand relation. If ~∇× ~F = ~G, then∫∫

S

~G · d ~A =

∮
C

~F · d~r.

By substituting, we can also write the conclusion as∫∫
S

(~∇× ~F ) · d ~A =

∮
C

~F · d~r.



Green’s Theorem
We can derive Green’s Theorem as a special case of Stokes’ Theorem. Consider a
vector field of the form ~F = P (x, y) ı̂+Q(x, y) ̂+ 0 k̂. Note that the curl of ~F is

~∇× ~F =
(
0− 0

)
ı̂−
(
0− 0

)
̂+

(∂Q
∂x
− ∂P

∂y

)
k̂ =

(∂Q
∂x
− ∂P

∂y

)
k̂.

Let D be a planar region in the xy-plane with the closed curve C as the edge of D.
Orient the curve C counterclockwise. If we think of D as a surface, we can express
the area element vectors as d ~A = dx dy k̂.
We now compute

(~∇× ~F ) · d ~A =
(∂Q
∂x
− ∂P

∂y

)
k̂ · dx dy k̂ =

(∂Q
∂x
− ∂P

∂y

)
dx dy.

Using this special case in the conclusion of Stokes’ Theorem, we get∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dx dy =

∮
C

(
P ı̂+Q ̂

)
· d~r.

Using an alternate notation for line integrals, this can also be written as∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dx dy =

∮
C

P dx+Qdy.

Common structure among these fundamental theorems
The theorems given above all have the same all of which have the same basic structure:
Integrating the derivative of a function over a region gives the same value as integrat-
ing the function itself over the edge of the region. In the case of a one-dimensional
region such as a curve, the edge consists of only two points so integrating over the
edge reduces to simply adding together two values. Here’s how this basic idea plays
out in the specific cases:

• In the Fundamental Theorem for Definite Integrals, the region is an interval
[a, b] on the input axis so the edge of the region consists of two points a and
b on the axis. The function is a function of one variable and the derivative is
the first kind of derivative you learned about. In words, the theorem says that
integrating the derivative F ′ over the interval [a, b] is the same as adding up
the function F for the two endpoints. But wait, isn’t F (b)− F (a) a difference
rather than a sum? Yes, but we can think of it as (−1)F (a) +F (b). The factor
of −1 relates to the issue of orientation. At a, the direction pointing out of
the negative direction while at b, the outward pointing direction is the positive
direction. The factor of −1 reflects the fact that the outward direction at a is
the negative direction.

• In the Fundamental Theorem for Line Integrals, the region is a curve C so the
edge consists of two points A and B or on the plane or in space. The function is
a function of two or more variable and the derivative is the gradient. In words,
the theorem says that integrating the gradient ~∇V over the curve C is the same



as adding up the function V for the two endpoints. We usually write this as
V (B) − V (A) but can think of it as (−1)V (a) + V (b). As above, the factor of
−1 relates to the issue of orientation and is related to the fact that d~r points
into the curve at A and out of the curve at B.

• In Green’s Theorem, the region is a planar region D with edge consisting of
a closed curve C. The function is a planar vector field and the derivative is
the k̂ component of the curl (which is the only non-zero component of the curl
for a planar vector field). In words, the theorem says that integrating the curl
∂Q/∂x − ∂P/∂y over the region D is the same as integrating the vector field
P ı̂+Q ̂ over the curve C.

• In Stoke’s Theorem, the region is a surface S in space with edge consisting of a
closed curve C. The function is a vector field and the derivative is the curl. In
words, the theorem says that integrating the curl ~∇ × ~F over the surface S is
the same as integrating the vector field ~F over the curve C.

• In the Divergence Theorem, the region is a solid region in space with edge
consisting of a closed surface S. The function is a vector field and the derivative
is the divergence. In words, the theorem says that integrating the divergence
~∇ · ~F over the solid region D is the same as integrating the vector field ~F over
the surface S.

We can also organize these in terms of the dimension of the region and its edge:

• In the Fundmental Theorems for Definite Integrals and Line Integrals, the region
is one-dimensional (an interval or a curve) and the edge is zero-dimensional (a
set of two points).

• In Green’s Theorem and Stoke’s Theorem, the region is two-dimensional (a
planar region or a surface) and the edge is one-dimensional (a curve).

• In the Divergence Theorem, the region is three-dimensional (a solid region) and
the edge is two-dimensional (a surface).

Importance of the fundamental theorems
The fundamental theorems are important for both aesthetic value and as a useful
tools. Aesthetically, the fundamental theorems provide a beautiful unity among the
various types of function, derivative, and integral we have explored in calculus. As
tools, we use the fundamental theorems in two primary ways:

• Rather than evaluate an integral directly, we can trade it in for a related ex-
pression that is easier to evaluate. You are very familiar with doing this when

you trade in a definite integral

∫ b

a

f(x) dx for the sum (−1)F (a) + F (b) =

F (b)− F (a). Problems 1, 3, and 4 give you practice with this type of “trading
in” using the other fundamental theorems.

• Given information about the derivative of a function at each point in a region,
we can deduce information about certain integrals for the function itself (and
vice versa). Problem 2 gives you an example of this use.



Problems: Fundamental theorems of calculus

1. Use the Divergence Theorem to evaluate

∫����∫
S

~F · d ~A where

~F = (z − x) ı̂+ (x− y) ̂+ (y − z) k̂

and S is the sphere of radius 4 centered at the origin with d ~A oriented outward.

Solution:

We start by computing the divergence of ~F to get

~∇ · ~F =
∂

∂x
[z − x] +

∂

∂y
[x− y] +

∂

∂z
[y − z] = −1− 1− 1 = −3.

We can now use the Divergence Theorem to trade in the surface integral for a
triple integral. Specifically, we have∫����∫

S

~F · d ~A =

∫∫∫
D

~∇ · ~F dV =

∫∫∫
D

(−3) dV

where D is the solid sphere of radius 4. Since the divergence in this case is
constant, the resulting triple integral is easy to evaluate. Doing so, we get∫����∫

S

~F · d ~A =

∫∫∫
D

(−3) dV = (−3)(volume of the solid sphere)

= (−3)
(4

3
π43
)

= −256π.

Since the Divergence Theorem is based on the surface S having outward pointing
area element vectors d ~A, we can interpret the negative value for the surface
integral as saying the net effect of fluid flow with velocities given by this vector
field is to carry fluid into the sphere.

2. Suppose that ~F is a vector field with ~∇ · ~F = 0 for all points in R3. Show that∫����∫
S

~F · d ~A = 0 for any closed surface S in R3.

Solution:

Since S is a closed surface, we can apply the Divergence Theorem to get∫����∫
S

~F · d ~A =

∫∫∫
D

~∇ · ~F dV =

∫∫∫
D

(0) dV = 0.

In terms of a fluid flow interpretation, this means that any fluid velocity field
with divergence equal to zero at all points will have a net zero fluid flow rate
across any closed surface.



3. Use Stokes’ Theorem (or Green’s Theorem) to evaluate

∮
C

~F · d~r where

~F = y2 ı̂− x2 ̂ and C is the square in the xy-plane with corners at (0, 0), (1, 0),
(1, 1), and (0, 1) traversed counterclockwise.

Solution:

We start by computing the curl of ~F to get

~∇× ~F = 0 ı̂+ 0 ̂+
( ∂
∂x

[−x2]− ∂

∂y
[y2]
)
k̂ = −2(x+ y) k̂.

The curve C is the edge of a square in the xy-plane so we can take this square
to be the surface S and use Stokes’ Theorem to trade in the line integral for a
surface integral. Specifically, we have∮

C

~F · d~r =

∫∫
S

(~∇× ~F ) · d ~A =

∫∫
S

(−2(x+ y) k̂) · d ~A.

Since the surface S is a square in the xy-plane and we are using cartesian
coordinates, we can express the area element vector as d ~A = dxdy k̂. The
square is described by the bounds 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Substituting these
and evaluating the resulting iterated integral, we get∮
C

~F · d~r =

∫∫
S

(−2(x+ y) k̂) · (dxdy k̂) =

∫ 1

0

∫ 1

0

(−2(x+ y)) dxdy = · · · = −2.

In the fluid flow interpretation, this tells us that the circulation around the edge
of the square (traversed counterclockwise) is negative so the fluid flow would be
a net hinderance in pushing a bead counterclockwise around the curve.

4. Suppose C is a simple closed curve in the xy-plane. Let ~F = −y ı̂ + x ̂ and

consider the line integral

∮
C

~F · d~r. Use Stokes’ Theorem (or Green’s Theorem)

to relate the value of this line integral to the area of the region enclosed by C.
Note: A simple curve is one with no self-intersections so a simple closed curve
is a loop with no self-interesections.

Solution:

For this vector field, we compute

~∇× ~F = 0 ı̂+ 0 ̂+
( ∂
∂x

[x]− ∂

∂y
[−y]

)
k̂ = 2 k̂.



The curve C is the edge of a region D in the xy-plane with area element vectors
d ~A = dA k̂ so we can apply Stokes’ Theorem to write∮

C

(
−y ı̂+ x ̂

)
· d~r =

∫∫
S

(~∇× ~F ) · d ~A =

∫∫
D

(2 k̂) · (dA k̂)

= 2

∫∫
S

dA = 2(area of region D).

So, we conclude that

area of D =
1

2

∮
C

(
−y ı̂+ x ̂

)
· d~r.


