More on equations of planes

So far, we have seen several forms for the equation of a plane:

$$
\begin{array}{cl}
A x+B y+C z+D=0 & \text { standard form } \\
z=m_{x} x+m_{y} y+b & \text { slopes-intercept form } \\
z-z_{0}=m_{x}\left(x-x_{0}\right)+m_{y}\left(y-y_{0}\right) & \text { point-slopes form }
\end{array}
$$

Using vectors, we can add another form that is coordinate-free.
A plane can be specified by giving a vector \vec{n} perpendicular to the plane (called a normal vector) and a point P_{0} on the plane. We can develop a condition or test to determine whether or not a variable point P is on the plane by thinking geometrically and using the dot product. Here's the reasoning:

- P is on the plane if and only if the vector $\overrightarrow{P_{0} P}$ is parallel to the plane.
- The vector $\overrightarrow{P_{0} P}$ is parallel to the plane if and only if $\overrightarrow{P_{0} P}$ is perpendicular to the normal vector \vec{n}.
- The vectors $\overrightarrow{P_{0} P}$ and \vec{n} are perpendicular if and only if their dot product is zero:

$$
\vec{n} \cdot \overrightarrow{P_{0} P}=0
$$

So, the condition $\vec{n} \cdot \overrightarrow{P_{0} P}=0$ is a new form for the equation of a line. We'll refer to this as the point-normal form. We can see how the point-normal form relates to our familiar forms by introducing coordinates and components. Let P_{0} have coordinates $\left(x_{0}, y_{0}, z_{0}\right)$, the variable point P have coordinates (x, y, z), and the normal vector \vec{n} have components $\left\langle n_{x}, n_{y}, n_{z}\right\rangle$. With these, the vector $\overrightarrow{P_{0} P}$ has components $\left\langle x-x_{0}, y-\right.$ $\left.y_{0}, z-z_{0}\right\rangle$. So, the point-normal form can be written as

$$
\begin{aligned}
0 & =\vec{n} \cdot \overrightarrow{P_{0} P} \\
& =\left\langle n_{x}, n_{y}, n_{z}\right\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle \\
& =n_{x}\left(x-x_{0}\right)+n_{y}\left(y-y_{0}\right)+n_{z}\left(z-z_{0}\right) \\
& =n_{x} x+n_{y} y+n_{z} z-\left(n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}\right) .
\end{aligned}
$$

The last expression is the same as $A x+B y+C z+D$ if we identify n_{z} as A, n_{y} as B, n_{z} as C and $-\left(n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}\right)$ as D. This is perhaps easier to see in an example.

Example

Find the standard form for the equation of the plane that contains the point $(6,5,2)$ and has normal vector $\langle 7,-3,4\rangle$.
With (x, y, z) as the coordinates of a variable point, we can write

$$
\begin{aligned}
0 & =\vec{n} \cdot \overrightarrow{P_{0} P} \\
& =\langle 7,-3,4\rangle \cdot\langle x-6, y-5, z-2\rangle \\
& =7(x-6)-3(y-5)+4(z-2) \\
& =7 x-3 y+4 z-42+15-8 \\
& =7 x-3 y+4 z-35 .
\end{aligned}
$$

So the standard form of the equation for this plane is $7 x-3 y+4 z-35=0$.

Exercises

1. Use the point-normal equation to determine which, if any, of the following points are on the plane that has normal vector $2 \hat{i}-\hat{j}+6 \hat{k}$ and contains the point $(3,4,2)$.
(a) $(5,-4,0)$
(b) $(1,6,2)$
(c) $(2,8,3)$

Answer: $(5,-4,0)$ and $(2,8,3)$ are on the plane, $(1,6,2)$ is not
2. Find the slopes-intercept form of the equation that contains the point $(4,2,-7)$ and has normal vector $\vec{n}=5 \hat{i}-3 \hat{j}+2 \hat{k}$.

$$
\text { Answer: } z=-\frac{5}{2} x+\frac{3}{2} y
$$

3. Find the slopes-intercept form of the equation for the plane that contains the point $(4,2,-7)$ and has normal vector $\vec{n}=\langle-6,1,5\rangle$.

$$
\text { Answer: } z=\frac{6}{5} x-\frac{1}{5} y-\frac{57}{5}
$$

4. Find the standard form of the equation for the plane that contains the point $(6,3,0)$ and is parallel to a second plane given by the equation $5 x+2 y-9 z=14$.

$$
\text { Answer: } 5 x+2 y-9 z-36=0
$$

5. Find the standard form of the equation for the plane that contains the point $(7,-2,1)$ and is perpendicular to the vector from the origin to that same point.

$$
\text { Answer: } 7 x-2 y+z-54=0
$$

