Constrained optimization

Problem: Design a fence to enclose a rectangular region of area $1200 \mathrm{~m}^{2}$. Material for one edge (facing the street) costs $\$ 50$ per meter while material for the other three edges costs $\$ 30$ per meter.

Objective: Minimize $C=50 I+30 w+2 \cdot 30 w=80 I+60 w$.
Constraint: Need $/ w=1200$.

Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.
$I=\frac{1200}{w}$ so $C=80 I+60 w=80 \frac{1200}{w}+60 w=\frac{96000}{w}+60 w$.
Compute $C^{\prime}=-\frac{96000}{w^{2}}+60$.
Solve $-\frac{96000}{w^{2}}+60=0$ to get $w= \pm 40$.
Use $w=40$ to get $I=\frac{1200}{40}=30$
So build fence with expensive edge of length 30 meters and other dimension of 40 meters.

Constraint curve $A=I w=1200$
Level curves for objective $C=80 I+60 w$
Gradient vectors for constraint $A=/ \mathrm{w}$
Gradient vectors for objective $C=80 I+60 w$

Maximum or minimum of objective along constraint curve will be at a point where
objective level curve is tangent to constraint curve

$$
\Uparrow
$$

objective gradient $\vec{\nabla} C$ is aligned with constraint gradient $\vec{\nabla} A$

$$
\vec{\nabla} C=\lambda \vec{\nabla} A \text { for some constant } \lambda
$$

