Constrained optimization

Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.

Objective: Minimize $C = 50l + 30w + 2 \cdot 30w = 80l + 60w$.

Constraint: Need lw = 1200.

Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

$$l = \frac{1200}{w} \text{ so } C = 80l + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w.$$

Compute $C' = -\frac{96000}{w^2} + 60.$
Solve $-\frac{96000}{w^2} + 60 = 0$ to get $w = \pm 40.$
Use $w = 40$ to get $l = \frac{1200}{40} = 30$

So build fence with expensive edge of length 30 meters and other dimension of 40 meters.

Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

