Inference

- Interested in a variable that can (in principle) be measured on everything in a population.
- Focus on a parameter θ (e.g. a mean or a proportion) that describes the population distribution of the variable.
- Not feasible to measure variable on everything in population so select a sample, measure the variable on each thing in the sample, and then compute a statistic θ̂ for the sample distribution
- Inference is the process of using the statistic value $\hat{\theta}$ to say something about the parameter value θ .
- need to account for variability in the sampling process
- two main methods of inference
 - confidence interval
 - significance test

Confidence intervals

- Confidence interval [θ̂ m, θ̂ + m]: an interval produced by a method that has a specified probability (often 95%) of returning an interval containing the parameter value θ
- ► to compute **margin of error** *m*, need to know about sampling distritution (i.e., distribution of $\hat{\theta}$ for all possible samples of fixed size)
- sampling distribution has standard deviation $\sigma_{\hat{\theta}}$
- for a given confidence level C, margin of error is multiple of *σ*_θ needed to have middle C of the sampling distribution

m = (multiplier for level C)(standard deviation for sampling distribution)

Significance tests

translate question into null and alternative hypotheses:

Null hypothesis: $\theta = \theta_0$ Alternate hypothesis: $\theta \neq \theta_0$

- determine statistic value $\hat{\theta}$ for a sample
- use θ̂ to compute **P-value**: probability of getting statistic values at least as far from θ₀ as θ̂ is within the sampling distribution of all possible statistic values
- ▶ use *P*-value as measure of evidence that $\hat{\theta}$ provides against the null hypothesis
- can use pre-determined significance level α as guide in decision to reject or accept the null hypothesis