Exploring more limits

In a previous exercise, you built evidence to support the following conjecture:

$$
\text { at } x=0 \text {, the limit of } f(x)=\frac{\sin x}{x} \text { is } 1
$$

We arrived at this conjecture by choosing infinite lists of input values x that "end" at 0 and finding that the corresponding lists of output values $f(x)$ all "end" at 1 .
Use this same approach to make conjectures about each of the following. Each conjecture should be either a specific value or the statment "a limit does not exist".

1. the limit of $f(x)=\frac{\sqrt{x+4}-3}{x-5}$ at $x=5$
2. the limit of $f(x)=\frac{x+3}{x^{2}-9}$ at $x=-3$
3. the limit of $f(x)=\frac{x+4}{x^{2}-9}$ at $x=-3$
4. the limit of $f(x)=\frac{\cos x}{x}$ at $x=0$
5. the limit of $f(x)=\frac{1-\cos x}{x^{2}}$ at $x=0$
6. the limit of $f(x)=\tan x$ at $x=\frac{\pi}{2}$
7. the limit of $f(x)=\sin \left(\frac{1}{x}\right)$ at $x=0$
8. the limit of $f(x)=x^{2}+1$ at $x=2$
9. the limit of $f(x)=x$ at $x=3$
10. the limit of $f(x)=5$ at $x=3$
11. the limit of $f(x)= \begin{cases}x^{2} & \text { if } x<4 \\ x+3 & \text { if } x>4\end{cases}$
12. the limit of $f(x)= \begin{cases}x^{2} & \text { if } x<4 \\ x+12 & \text { if } x>4\end{cases}$
13. the limit of $f(x)=\frac{3 x}{x+10}$ at " $x=\infty^{\prime \prime}$
14. the limit of $f(x)=\frac{3 x^{2}}{x+10}$ at " $x=\infty^{\prime \prime}$
15. the limit of $f(x)=\frac{3 x}{x^{2}+10}$ at " $x=\infty^{\prime \prime}$
16. the limit of $f(x)=\cos \left(\frac{1}{x}\right)$ at " $x=\infty^{\prime \prime}$
