Euler's method problems

Note: You might find it helpful to record your results in a table as you proceed through the calculations for each problem.

1. With a step size of $\Delta t=0.2$, compute three steps of Euler's method to approximate the solution of $R^{\prime}(t)=-0.3 R(t)$ starting with $R(1)=25$

$$
\text { Answer: } R(1.6) \approx 20.76
$$

2. With a step size of $\Delta x=0.1$, compute three steps of Euler's method to approximate the solution of $y^{\prime}(x)=e^{-x^{2}}$ starting with $y(0)=0$.

$$
\text { Answer: } y(0.3) \approx 0.295
$$

3. With a step size of $\Delta t=0.4$, compute three steps of Euler's method to approximate the solution of $g^{\prime}(t)=t g(t)$ starting with $g(0)=5$.

Answer: $g(1.2) \approx 7.656$
4. With a step size of $\Delta t=0.5$, compute ten steps of Euler's method to approximate the solution of $R^{\prime}(t)=t-R(t)$ starting with $R(0)=3$. Graph your computed points in a plot of R versus t.

