The derivative of a composition

Consider having a gas in a cylinder with an adjustable piston so that we can control or measure quantities such as volume V, pressure p, temperature T, and the number of gas atoms/molecules n. Each of these quantities has units as given in the table below.

Quantity	Units
volume V	liter (L)
pressure p	atmosphere (atm)
temperature T	Kelvin (K)
number n	mol

We'll assume that these quantities are related by the ideal gas law

$$
p V=n R T
$$

where R is a constant with value $R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}$.
Let's consider a specific situation in which we keep the number of gas particles constant at $n=1 \mathrm{~mol}$ and the temperature constant at $T=300 \mathrm{~K}$. We can then think of volume as a function of pressure. We can solve to get

$$
V=n R T \cdot \frac{1}{p}
$$

where $n R T$ is a constant in the context we've set up.
Exercise 1: Compute the rate of change in volume with respect to pressure for $p=1.09$ atm. Include units in your calculations.

Now, let's introduce time t as a new variable with t measured in minutes (min). Imagine that we control pressure over time. To be specific, suppose we control pressure so that

$$
p=p_{0}+a t^{2}
$$

with constants $p_{0}=1 \mathrm{~atm}$ and $a=0.01 \frac{\mathrm{~atm}}{\mathrm{~min}^{2}}$.
Exercise 2(a): Compute the pressure for $t=3 \mathrm{~min}$. Include units in your calculations.

Exercise 2(b): Compute the rate of change in pressure with respect to time for $t=3$ min. Include units in your calculations.

Here's the main question: How do we combine

$$
\left.\frac{d V}{d p}\right|_{p=1.09 \mathrm{~atm}} \quad \text { and }\left.\quad \frac{d p}{d t}\right|_{t=3 \min }
$$

to get the rate of change in volume with respect to time at $t=3 \mathrm{~min}$? In other words, how do we get

$$
\left.\frac{d V}{d t}\right|_{t=3 \min } \quad \text { from }\left.\quad \frac{d V}{d p}\right|_{p=1.09 \mathrm{~atm}} \quad \text { and }\left.\quad \frac{d p}{d t}\right|_{t=3 \min } ?
$$

Exercise 3: Conjecture a relation that gives

$$
\left.\frac{d V}{d t}\right|_{t=3 \min } \quad \text { in terms of }\left.\quad \frac{d V}{d p}\right|_{p=1.09 \mathrm{~atm}} \quad \text { and }\left.\quad \frac{d p}{d t}\right|_{t=3 \mathrm{~min}}
$$

Hint: Think about units.

