## Undoing differentiation

1. (a) Find a function $F(x)$ with derivative equal to $f(x)=x^{2}$.
(b) Find a different function $F(x)$ with derivative equal to $f(x)=x^{2}$.
(c) Find all functions $F(x)$ that have derivative equal to $f(x)=x^{2}$.
(d) Among the functions $F(x)$ you have in (c), find the one function with $F(6)=10$.
(e) Among the functions $F(x)$ you have in (c), find the one function with $F(0)=2$.
2. (a) Find a function $P(t)$ with derivative equal to $p(t)=e^{3 t}$.
(b) Find a different function $P(t)$ with derivative equal to $p(t)=e^{3 t}$.
(c) Find all functions $P(t)$ that have derivative equal to $p(t)=e^{3 t}$.
(d) Among the functions $P(t)$ you have in (c), find the one function with $P(0)=10$.
3. For each of the following, find all functions $F(x)$ with derivative equal to the given function $f(x)$.
(a) $f(x)=5 x^{2}$
(e) $f(x)=\cos x$
(b) $f(x)=3+x$
(f) $f(x)=5 x+3 \sin x$
(c) $f(x)=5 x^{2}+7 x-2$
(g) $f(x)=\sec ^{2} x$
(d) $f(x)=\sin x$
(h) $f(x)=\frac{1}{1+x^{2}}$
4. An object in free fall near the earth's surface has a constant acceleration of $-g$ where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. If $a(t)$ is the object's acceleration function, we have $a(t)=-g$.
(a) Find all velocity functions $v(t)$ corresponding to the acceleration function $a(t)=$ $-g$.
(b) Among the velocity functions you have in (a), find the one velocity function with $v(0)=5 \mathrm{~m} / \mathrm{s}$.
(c) Among the velocity functions you have in (a), find the one velocity function with $v(0)=v_{0}$ where $v_{0}$ is a constant.
(d) Find all position functions $s(t)$ corresponding to the velocity function you found in (c).
(e) Among the position functions you have in (d), find the one position function with $s(0)=s_{0}$ where $s_{0}$ is a constant.
