Error in Simpson's rule

We will build an approximation for a definite integral based on the interpolating polynomial on three points $\left\{x_{0}, x_{1}, x_{2}\right\}$. We start with

$$
f(x)=p_{2}(x)+E_{2}(x)
$$

and integrate both sides to get

$$
\int_{x_{0}}^{x_{2}} f(x) d x=\int_{x_{0}}^{x_{2}} p_{2}(x) d x+\int_{x_{0}}^{x_{2}} E_{2}(x) d x .
$$

You can work out the details to find

$$
\int_{x_{0}}^{x_{2}} p_{2}(x) d x=\frac{h}{2}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)
$$

which is our approximation.
The error in this approximation is given by

$$
\int_{x_{0}}^{x_{2}} E_{2}(x) d x=\int_{x_{0}}^{x_{2}} \frac{f^{\prime \prime \prime}(\xi(x))}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x .
$$

We cannot apply the Weighted Mean Value Theorem directly since $\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)$ changes sign on $\left[x_{0}, x_{2}\right]$. Following Andy's suggestion, we can split the interval at x_{1} to get
$\int_{x_{0}}^{x_{2}} E_{2}(x) d x=\int_{x_{0}}^{x_{1}} \frac{f^{\prime \prime \prime}(\xi(x))}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x+\int_{x_{1}}^{x_{2}} \frac{f^{\prime \prime \prime}(\xi(x))}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x$.
Applying the Weighted Mean Value Theorem to each term, we conclude there exists $x i_{0}$ in [$\left.x_{0}, x_{1}\right]$ and ξ_{1} in $\left[x_{1}, x_{2}\right]$ such that
$\int_{x_{0}}^{x_{2}} E_{2}(x) d x=\frac{f^{\prime \prime \prime}\left(\xi_{0}\right)}{3!} \int_{x_{0}}^{x_{1}}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x+\frac{f^{\prime \prime \prime}\left(\xi_{1}\right)}{3!} \int_{x_{1}}^{x_{2}}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x$.
The remaining integrals are straightforward to evaluate. (Full disclosure: I coaxed them out of Mathematica.) After some simplification, we get

$$
\int_{x_{0}}^{x_{2}} E_{2}(x) d x=\frac{f^{\prime \prime \prime}\left(\xi_{0}\right)}{3!}\left(\frac{h^{4}}{4}\right)+\frac{f^{\prime \prime \prime}\left(\xi_{1}\right)}{3!}\left(-\frac{h^{4}}{4}\right)=\frac{h^{4}}{24}\left(f^{\prime \prime \prime}\left(\xi_{0}\right)-f^{\prime \prime \prime}\left(\xi_{1}\right)\right) .
$$

Putting the pieces together, we have

$$
\int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{2}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)+\frac{h^{4}}{24}\left(f^{\prime \prime \prime}\left(\xi_{0}\right)-f^{\prime \prime \prime}\left(\xi_{1}\right)\right)
$$

Having worked out the details of the error term, we can see that Simpson's rule is (unexpectedly) exact for cubic functions since the third derivative of a cubic function is constant.

