Problems from Section 2.1

1. Use the Bisection method to find p_{3} for $f(x)=\sqrt{x}=\cos x$ on $[0,1]$.

Note: The text denotes the value of the nth approximation by p_{n}.
5. Use the Bisection method to find solutions accurate to with 10^{-5} for the following problems.
(a) $x-2^{-x}=0 \quad$ for $\quad 0 \leq x \leq 1$
7. (a) Sketch the graphs of $y=x$ and $y=2 \sin x$.
(b) Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x=2 \sin x$.
11. Let $f(x)=(x+2)(x+1) x(x-1)^{3}(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?
(a) $[-3,2.5]$
(b) $[-2.5,3]$
(c) $[-1.75,1.5]$
(d) $[-1.5,1.75]$

Note: For each, try to determine the relevant zero with a minimal amount of computation. That is, try to avoid a "brute force" approach such as iterating the bisection method 1000 times and then checking which zero the resulting approximation is near.
18. The function $f(x)=\sin (\pi x)$ has zeros at every integer. Show that when $-1<x<0$ and $2<b<3$, the Bisection method converges to
(a) 0 , if $a+b<2$
(b) 2 , if $a+b>2$
(c) 1 , if $a+b=2$

Programming Problem Modify the implementation of the bisection method from class to include a check that the original interval is valid.

