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MATH 280 Multivariate Calculus Fall 2006 Final Exam

Instructions: You can work on the problems in any order. Please use just one side of each
page and clearly number the problems. You do not need to write answers on the question sheet.

This exam is a tool to help me (and you) assess how well you are learning the course material.
As such, you should report enough written detail for me to understand how you are thinking
about each problem. (100 points total)

1. (a) Give a component proof for the identity ~u · (~u × ~v) = 0. (4 points)

(b) Give a geometric argument for the identity ~u · (~u × ~v) = 0. (4 points)

2. Consider the two curves given by the vector-output functions ~R(t) = t ı̂ + t2 ̂ + t3 k̂ and
~P (s) = (s + 3) ı̂ + (2s2 + 2) ̂ + (9 − s4) k̂.

(a) Confirm that each curve contains the point (2, 4, 8). (3 points)

(b) Find the angle between the curves at the point of intersection (2, 4, 8).
Hint: Think tangent vectors. (7 points)

3. Find the equation of the tangent plane for f(x, y) = x3y for (2, 5). (10 points)

4. Show that (3,−1) is a critical input for the function f(x, y) = x2y3−6xy−9y and classify
this input as a local minimizer, a local maximizer, or neither. (10 points)

5. Motion of air in the atmosphere (i.e., wind) is related to differences in air pressure from
one place to another. In a simple-minded way of thinking about this, air is pushed in the
direction that air pressure decreases most rapidly at each point. Find the direction air
is pushed at the point (2, 4, 1) if the air pressure is given by p(x, y, z) = 4xy + 3yz (in
unspecified units). Give the result as a unit vector. (10 points)

There is more on the flip side.



6. Compute the value of the double integral

∫∫

D

x2y dA where D is the region in the xy-plane

bounded below by y = x3 and above by y =
√

32x. (10 points)

7. Compute the formula for the volume of a sphere of radius R using ideas from this course.
(10 points)

8. Compute the formula for the surface area of a sphere of radius R using ideas from this
course. (10 points)

9. Consider the vector field ~F (x, y) = yz ı̂ + xz ̂ + xy k̂.

(a) Compute the divergence of ~F . (4 points)

(b) Compute the curl of ~F . (4 points)

(c) Imagine a drop of dye in a fluid moving with velocities given by ~F . Describe how
the volume of the drop changes and how the drop rotates as it moves with the fluid.

(2 points)

10. Consider the line integral

∫
C

~F · d~R where ~F (x, y, z) = z ı̂ + z ̂ + (x + y) k̂ and C is the

straight line from (2, 1, 3) to (5, 0, 1).

(a) Compute

∫

C

~F · d~R by parametrizing the curve. (6 points)

(b) Compute

∫

C

~F · d~R using the Fundamental Theorem for Line Integrals. (6 points)


