Computing divergence and curl

1. Compute the divergence for each of the following vector fields.
(a) $\vec{F}=x \hat{\imath}+y \hat{\jmath}$
(b) $\vec{F}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
(c) $\vec{F}=z \sin (x y) \hat{\imath}+(x+y) \hat{\jmath}+z e^{x} \hat{k}$
(d) $\vec{F}=-y \hat{\imath}+x \hat{\jmath}$
(e) $\vec{F}=\frac{x \hat{\imath}+y \hat{\jmath}}{\sqrt{x^{2}+y^{2}}}$
(f) $\vec{F}=\frac{x \hat{\imath}+y \hat{\jmath}}{x^{2}+y^{2}}$
2. Compute the curl for each of the following vector fields.
(a) $\vec{F}=x \hat{\imath}+y \hat{\jmath}$
(b) $\vec{F}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
(c) $\vec{F}=z \sin (x y) \hat{\imath}+(x+y) \hat{\jmath}+z e^{x} \hat{k}$
(d) $\vec{F}=-y \hat{\imath}+x \hat{\jmath}$
(e) $\vec{F}=\frac{-y \hat{\imath}+x \hat{\jmath}}{\sqrt{x^{2}+y^{2}}}$
(f) $\vec{F}=\frac{-y \hat{\imath}+x \hat{\jmath}}{x^{2}+y^{2}}$
