\qquad
MATH 352
Instructions: Do your own work. You may consult class notes, the course text, or other books. Give a reference if you use some source other than class notes or the course text. Turn in a complete and concise write up of your work. Show enough detail so that a peer could follow your work (both computations and reasoning). If you are not confident in some result, you will receive more credit if you make a note of this and comment on where you might be going wrong or on alternate approaches you might try. The exam is due Wednesday, May 7 at 4:00 pm.

1. Consider a function $f(z)=\frac{p(z)}{q(z)}$ where p and q are analytic at $z_{0}, p\left(z_{0}\right) \neq 0$, and q has a zero of order 2 at z_{0}.
(a) Show that f has a pole of order 2 at z_{0} and find an expression for the residue of f at z_{0} in terms of p, q, and derivatives of these functions.
(b) Use your result to compute the residue of $f(z)=\frac{1}{\sin ^{2} z}$ at $z_{0}=0$.
2. Consider the contour integral $\oint_{C} \frac{z^{4}}{(z+1)(z-2)(z-2 i)} d z$ where C is the circle of radius 3 centered at the origin.
(a) Evaluate this using the usual residue theorem.
(b) Evaluate this using Theorem 2 on page 185 of the text.
3. Problem $\# 13$ on page 216 of the text.
4. Find the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by analyzing $\oint_{C_{N}} \frac{1}{z^{2} \tan z} d z$ where C_{N} is the square contour with edges on the lines $x= \pm\left(N+\frac{1}{2}\right) \pi$ and $y= \pm\left(N+\frac{1}{2}\right) \pi$.
5. Show how to deduce the Cauchy-Goursat theorem and Cauchy's integral formulas starting from the residue theorem.
