Name			
MATH 352	Complex Analysis	Spring 2003	Exam $#3$
Instructions: Do	your own work. You may consult	class notes, the course te	xt, or other books.
Give a reference if	you use some source other than	n class notes or the cours	se text. Turn in a
complete and conc	ise write up of your work. Show	v enough detail so that a	peer could follow
your work. If you	are not confident in some result.	you will receive more cr	edit if you make a
note of this and co	mment on where you might be	going wrong or on alterna	te approaches you
might try. The exa	m is due Thursday. April 10 at 8	8:30 am.	

- 1. Let C be the unit circle centered at the origin oriented counterclockwise. (24 points)
 - (a) Find the value of $\int_{C} \frac{\log z}{z} dz$ with the branch using $-\pi < \arg z \le \pi$ for the logarithm. (b) Find the value of $\int_{C} \frac{\log z}{z} dz$ with the branch using $0 \le \arg z < 2\pi$ for the logarithm.
- 2. Evaluate $\int_{C} \frac{11z^2 + 10z 162}{z^3 z^2 22z + 40} dz$ where C is the circle of radius 3 centered at the origin oriented counterclockwise. Hint: Rewrite the integrand using *partial fractions*. Most calculus books explain the algebra of partial fractions. (22 points)
- 3. Let C_R be the circle of radius R centered at the origin. Find an upper bound on $\left| \int_{C_R} \frac{e^z}{z} dz \right|$ without evaluating the contour integral explicitly. (22 points)
- 4. Problem #8 on page 129. Come talk with me if you are not familiar with the binomial formula suggested as a hint in the problem. (18 points)
- 5. Prove the following: If f is entire and $\text{Im}(f(z)) \leq 0$ for all z, then f is a constant function. (14 points)