\qquad
MATH 352
Instructions: Do your own work. You may consult class notes, the course text, or other books. Give a reference if you use some source other than class notes or the course text. Turn in a complete and concise write up of your work. Show enough detail so that a peer could follow your work. If you are not confident in some result, you will receive more credit if you make a note of this and comment on where you might be going wrong or on alternate approaches you might try. The exam is due Thursday, April 10 at 8:30 am.

1. Let C be the unit circle centered at the origin oriented counterclockwise.
(24 points)
(a) Find the value of $\int_{C} \frac{\log z}{z} d z$ with the branch using $-\pi<\arg z \leq \pi$ for the logarithm.
(b) Find the value of $\int_{C} \frac{\log z}{z} d z$ with the branch using $0 \leq \arg z<2 \pi$ for the logarithm.
2. Evaluate $\int_{C} \frac{11 z^{2}+10 z-162}{z^{3}-z^{2}-22 z+40} d z$ where C is the circle of radius 3 centered at the origin oriented counterclockwise. Hint: Rewrite the integrand using partial fractions. Most calculus books explain the algebra of partial fractions.
(22 points)
3. Let C_{R} be the circle of radius R centered at the origin. Find an upper bound on $\left|\int_{C_{R}} \frac{e^{z}}{z} d z\right|$ without evaluating the contour integral explicitly.
(22 points)
4. Problem \#8 on page 129. Come talk with me if you are not familiar with the binomial formula suggested as a hint in the problem.
5. Prove the following: If f is entire and $\operatorname{Im}(f(z)) \leq 0$ for all z, then f is a constant function.
