
Some theory on systems of first-order linear homogeneous

ODEs

We’ll use the following notation:

• C1

n
(a, b) is the vector space of column vector functions (of size n) with continuous

first derivatives on the interval (a, b)

• ~θ(t) is the zero column vector function (i.e., the column vector function for
which each entry is identically zero for all t in (a, b))

• [ ~A1, ~A2, . . . , ~An] is the matrix with column vectors ~Ai

• WS(t) is the Wronskian of the set S = {~f1(t), ~f2(t), . . . , ~fn(t)} defined as

WS(t) = det
[

~f1(t), ~f2(t), . . . , ~fn(t)
]

Theorem 1. Let S = {~f1(t), ~f2(t), . . . , ~fn(t)} be a set of functions in Cn(a, b). If
there is a t0 in (a, b) such that WS(t0) is nonzero, then S is linearly independent.

Proof. Start with the defining equation of linear independence

c1
~f1(t) + c2

~f2(t) + · · · + cn
~fn(t) = ~θ(t).

We must show that the only solution is the trivial solution. First we introduce some
notation. Let F (t) = [~f1(t), ~f2(t), . . . , ~fn(t)]. Let ~c = [c1, c2, . . . , cn]T . We can then
write the defining equation as

F (t)~c = ~θ(t).

The Wronskian WS(t) is defined as the determinant of the coefficient matrix for this
system. Since the Wronskian is nonzero for t0 in (a, b), the system has a unique
solution for that value t0. This unique solution must be the trivial solution because
the system of equations is homogeneous. Thus, the trivial solution is the only solution
for all values of t.

We now look at the set of solutions for a homogeneous system of n linear first-order
differential equations.

Theorem 2. If A(t) is an n × n matrix function that is continous on the interval

(a, b), then the solution space S =
{

~y ∈ C1

n
(a, b)

∣

∣

dy

dt
= A~y

}

is a subspace of C1

n
(a, b)

with dimension n.



Proof. It is straightforward to show that that S is a subspace of C1

n
(a, b). One could

do this directly or one could show that
d

dt
− A(t) is a linear operator and recognize

that S is the null space of this operator. To show that S has dimension n, we will
find a basis with n elements.

To begin, we claim the existence of n solutions to the system by the existence-
uniqueness theorem. In particular, pick some t0 in (a, b) and let ~h1(t), ~h2(t), . . . ,
~hn(t) be the solutions which satisfy the initial conditions

~hi(t0) = ~ei

where ~ei denotes the ith column of the (n × n) identity matrix In. Let B = {~h1(t),
~h2(t), . . . , ~hn(t)}. To prove that B is a basis for S, we must show two things: one,
that B is linearly independent; and two, that B spans S.

To show linear independence, we note that WB(t0) = det(In) = 1 6= 0. By Theorem
1, the set B is linearly independent.

To prove that the set B spans S, we must show that any other solution in S can
be written as a linear combination of the elements in B. Let ~y(t) be any solution.
For t0, this solution has some value

~y(t0) = ~c

where ~c = [c1, c2, . . . , cn]T . Consider the solution given by the linear combination

c1
~h1(t) + c2

~h2(t) + · · · + cn
~hn(t). Note that at t0, this solution has the same value as

the solution ~y(t). Hence, by the existence-uniqueness theorem, we have

~y(t) = c1
~h1(t) + c2

~h2(t) + · · · + cn
~hn(t)

for all t in (a, b). This gives ~y(t) as a linear combination of the elements in B and
thus completes the proof.


