Some matrix exponential problems

1. Use the definition of matrix exponential to directly compute $e^{A t}$ for $A=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$ where λ is a constant.
2. Prove $\left(e^{B}\right)^{-1}=e^{-B}$ for any $(n \times n)$ matrix B. Note that $\left(e^{B}\right)^{-1}$ means the matrix inverse of e^{B}.
3. Compute $e^{A t} \vec{w}$ where $A=\left[\begin{array}{rrr}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

Hint: First write \vec{w} as a linear combination of eigenvectors for A.
4. Consider the system $\frac{d \vec{y}}{d t}=A \vec{y}$ with $A=\left[\begin{array}{rrr}-7 & -6 & -12 \\ 5 & 5 & 7 \\ 1 & 0 & 4\end{array}\right]$.
(a) Find the eigenstuff for A.
(b) Construct a fundamental matrix solution for the system.
(c) Compute $e^{A t}$.
5. Prove the following: If $\Psi(t)$ is a fundamental matrix solution for $\frac{d \vec{y}}{d t}=A \vec{y}$, then

$$
e^{A\left(t-t_{0}\right)}=\Psi(t) \Psi^{-1}\left(t_{0}\right)
$$

