Some theory on linear homogeneous ODEs

We'll use the following notation:

- $C^{n}(a, b)$ is the vector space of functions with continuous $n^{\text {th }}$ derivative on the domain (a, b).
- $L=D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}$ where each of the coefficients a_{i} is a function of the independent variable and D is the differentiation operator
- $W_{S}(t)$ is the Wronskian of the set $S=\left\{f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right\}$ defined as

$$
W_{S}(t)=\operatorname{det}\left[\begin{array}{cccc}
f_{1}(t) & f_{2}(t) & \ldots & f_{n}(t) \\
f_{1}^{\prime}(t) & f_{2}^{\prime}(t) & \ldots & f_{n}^{\prime}(t) \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)}(t) & f_{2}^{(n-1)}(t) & \ldots & f_{n}^{(n-1)}(t)
\end{array}\right]
$$

Theorem 1. Let $S=\left\{f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right\}$ be a set of functions in $C^{n}(a, b)$. If there is a t_{0} in (a, b) such that $W_{S}\left(t_{0}\right)$ is nonzero, then S is linearly independent.

Proof. Start with the defining equation of linear independence

$$
c_{1} f_{1}(t)+c_{2} f_{2}(t)+\cdots+c_{n} f_{n}(t)=\theta(t)
$$

where $\theta(t)$ is the zero function. We must show that the only solution is the trivial solution. Differentiate both sides of this equation $n-1$ times to generate a system of equations

$$
\begin{array}{ccr}
c_{1} f_{1}(t)+c_{2} f_{2}(t) & +\cdots+c_{n} f_{n}(t) & =\theta(t) \\
c_{1} f_{1}^{\prime}(t)+c_{2} f_{2}^{\prime}(t) & +\cdots+c_{n} f_{n}^{\prime}(t) & =\theta(t) \\
\vdots & \vdots & \vdots \\
c_{1} f_{1}^{(n-1)}(t)+c_{2} f_{2}^{(n-1)}(t)+\cdots+c_{n} f_{n}^{(n-1)}(t) & =\theta(t)
\end{array}
$$

The Wronskian $W_{S}(t)$ is defined as the determinant of the coefficient matrix for this system. Hence, if the Wronskian is nonzero for t_{0} in (a, b), the system has a unique solution for that value t_{0}. This unique solution must be the trivial solution because the system of equations is homogeneous. Thus, the trivial solution is the only solution for all values of t.

We now look at the set of solutions for an $n^{\text {th }}$ order, linear homogeneous differential equation $L[y(t)]=\theta(t)$. We can view the solution set as the null space $\mathcal{N}(L)$, defined as

$$
\mathcal{N}(L)=\left\{y \in C^{n}(a, b) \mid L[y]=0\right\} .
$$

Theorem 2. If $a_{n-1}(t), \ldots, a_{1}(t), a_{0}(t)$ are continuous for all t in (a, b) and L is defined as above, then the solution set $\mathcal{N}(L)$ is a subspace of $C^{n}(a, b)$ of dimension n.

Proof. Since L is a linear transformation, we know that $\mathcal{N}(L)$ is a subspace of $C^{n}(a, b)$ by a standard theorem of linear algebra (for example, see Theorem NSLTS of FCLA). To show that it has dimension n, we will find a basis with n elements.

To begin, we claim the existence of n solutions to the O.D.E. by the existenceuniqueness theorem. In particular, pick some t_{0} in I and let $h_{1}(t), h_{2}(t), \ldots, h_{n}(t)$ be the solutions that satisfy the following sets of initial conditions

$$
\begin{array}{rrrr}
h_{1}\left(t_{0}\right)=1, & h_{1}^{\prime}\left(t_{0}\right)=0, & \ldots, & h_{1}^{(n-1)}\left(t_{0}\right)=0 \\
h_{2}\left(t_{0}\right)=0, & h_{2}^{\prime}\left(t_{0}\right)=1, & \ldots, & h_{2}^{(n-1)}\left(t_{0}\right)=0 \\
\vdots & \vdots & \vdots & \\
h_{n}\left(t_{0}\right)=0, & h_{n}^{\prime}\left(t_{0}\right)=0, & \ldots, & h_{n}^{(n-1)}\left(t_{0}\right)=1
\end{array}
$$

To prove that $\left\{h_{1}(t), h_{2}(t), \ldots, h_{n}(t)\right\}$ is a basis for $N(L)$, we must show two things: one, that the set is linearly independent; and two, that the set spans $N(L)$.

To show linear independence, we note that

$$
W\left[h_{1}, h_{2}, \ldots, h_{n}\right]\left(t_{0}\right)=1 \neq 0 .
$$

By Theorem 1, the set $\left\{h_{1}(t), h_{2}(t), \ldots, h_{n}(t)\right\}$ is linearly independent.
To prove that the set $\left\{h_{1}(t), h_{2}(t), \ldots, h_{n}(t)\right\}$ spans $N(L)$, we must show that any other solution in $N(L)$ can be written as a linear combination of the elements in $\left\{h_{1}(t), h_{2}(t), \ldots, h_{n}(t)\right\}$. Let $y(t)$ be any solution. At t_{0}, this solution and its derivatives have some values

$$
y\left(t_{0}\right)=c_{1}, y^{\prime}\left(t_{0}\right)=c_{2}, \ldots, y^{(n-1)}\left(t_{0}\right)=c_{n} .
$$

Consider the solution given by the linear combination $c_{1} h_{1}(t)+c_{2} h_{2}(t)+\cdots+c_{n} h_{n}(t)$. Note that at t_{0}, this solution and its derivatives has the same values as the solution $y(t)$ and its derivatives. Hence, by the existence-uniqueness theorem, we have

$$
y(t)=c_{1} h_{1}(t)+c_{2} h_{2}(t)+\cdots+c_{n} h_{n}(t) .
$$

This gives $y(t)$ as a linear combination of the elements in $\left\{h_{1}(t), h_{2}(t), \ldots, h_{n}(t)\right\}$ and thus completes the proof.

Theorem 3. Let $S=\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}$ be a set of n solutions to the $n^{\text {th }}$ order linear differential equation $L[y]=0$ with coefficient functions a_{i} that are continuous for (a, b). The set S is linearly independent if and only if there is a t_{0} in (a, b) such that $W_{S}\left(t_{0}\right)$ is nonzero.

Proof. The proof of one direction follows immediately from Theorem 1. The proof of the other direction is an exercise.

Exercises

1. Determine if $S=\left\{t^{3},|t|^{3}\right\}$ is linearly independent in $C^{2}(-\infty, \infty)$ without using the Wronskian. Now compute the Wronskian of S. Comment on these results in relation to Theorems 1 and 3.
2. Finish the proof of Theorem 3. Hint: Work with the contrapositive of the statement to be proven: If $W_{S}(t)=0$ for all t in (a, b), then S is linearly dependent. Don't forget that here the set S consists of solutions to $L[y]=0$.
