Solutions to some triple integral problems

For each of the following, set up an iterated integral equal to the given triple integral.

1. $\iiint_{R}(x+2 y-z) d V$ where $R=[0,2] \times[-4,6] \times[-3,0]$

Solution: $\iiint_{R}(x+2 y-z) d V=\int_{-3}^{0} \int_{-4}^{6} \int_{0}^{2}(x+2 y-z) d x d y d z$
2. $\iiint_{R}(x+2 y-z) d V$ where R is the solid region bounded between the graph of $z=x^{2}+y^{2}$ and the plane $3 x+5 y+2 z-12=0$
Solution: The graph of $z=z^{2}+y^{2}$ is a paraboloid. We find the intersection between the paraboloid and the plane by equating z for each to get

$$
x^{2}+y^{2}=-\frac{3}{2} x-\frac{5}{2} y+6
$$

By completing the square on the x terms and on the y terms, we can rewrite this as

$$
\left(x+\frac{3}{4}\right)^{2}+\left(y+\frac{5}{4}\right)^{2}=\frac{65}{8} .
$$

This is the equation of a circle of radius $r_{0}=\sqrt{65 / 8}$ centered at the point $(-3 / 4,-5 / 4)$. This circle is the projection of the intersection between the paraboloid and the plane. For points of the $x y$-plane inside the circle, the solid region extends in the z-direction from $z=x^{2}+y^{2}$ to $z=-\frac{3}{2} x-\frac{5}{2} y+6$. To describe the points of the $x y$-plane inside the disk, let's introduce some temporary new coordinates $u=x+\frac{3}{4}$ and $v=y+\frac{5}{4}$. In $u v$-coordinates, the equation of the circle is

$$
u^{2}+v^{2}=r_{0}^{2} .
$$

We can choose constant bounds for u to get

$$
-r_{0} \leq u \leq r_{0} \quad \text { and } \quad-\sqrt{r_{0}^{2}-u^{2}} \leq v \leq \sqrt{r_{0}^{2}-u^{2}}
$$

as our description of the disk. Translating back to x and y gives

$$
-r_{0} \leq x+\frac{3}{4} \leq r_{0} \quad \text { and } \quad-\sqrt{r_{0}^{2}-\left(x+\frac{3}{4}\right)^{2}} \leq y+\frac{5}{4} \leq \sqrt{r_{0}^{2}-\left(x+\frac{3}{4}\right)^{2}}
$$

so we can describe the disk by

$$
-r_{0}-\frac{3}{4} \leq x \leq r_{0}-\frac{3}{4} \quad \text { and } \quad-\sqrt{r_{0}^{2}-\left(x+\frac{3}{4}\right)^{2}}-\frac{5}{4} \leq y \leq \sqrt{r_{0}^{2}-\left(x+\frac{3}{4}\right)^{2}}-\frac{5}{4} .
$$

A complete description of the solid region is thus given by

$$
\begin{aligned}
-r_{0}-\frac{3}{4} & \leq x
\end{aligned} \leq r_{0}-\frac{3}{4} ~\left(\begin{array}{l}
r_{0}^{2}-\left(x+\frac{3}{4}\right)^{2} \\
-\frac{5}{4} \\
-\sqrt{r_{0}^{2}-\left(x+\frac{3}{4}\right)^{2}}-\frac{5}{4}
\end{array}\right.
$$

We can thus write

$$
\iiint_{R}(x+2 y-z) d V=\int_{x_{1}}^{x_{2}} \int_{y_{1}(x)}^{y_{2}(x)} \int_{z_{1}(x, y)}^{z_{2}(x, y)}(x+2 y-z) d z d y d x
$$

where the limits of integration can be read off from the description of the solid region. Using Mathematica, I evaluated this iterated integral and got

$$
\iiint_{R}(x+2 y-z) d V=\frac{-1094275 \pi}{3072} \approx-1119.06
$$

3. $\iiint_{R} 1 d V$ where R is the solid region bounded by the surface $\frac{x^{2}}{4}+\frac{y^{2}}{9}-z^{2}=1$, the plane $z=-1$ and the plane $z=2$
Solution: The graph of $\frac{x^{2}}{4}+\frac{y^{2}}{9}-z^{2}=1$ is a hyperboloid of one sheet with main axis along the z-axis and elliptic cross-sections parallel to the $x y$-plane. We are given constant bounds on z so consider the $y z$ cross-section. (One could also choose to work with the $x y$ cross-section here.) In the $y z$-plane, the relevant region is between the two branches of the hyperbola $\frac{y^{2}}{9}-z^{2}=1$ from $z=-1$ to $z=2$. We can describe this planar region by

$$
-1 \leq z \leq 2 \quad \text { and } \quad-3 \sqrt{1+z^{2}} \leq y \leq 3 \sqrt{1+z^{2}} .
$$

For each point of the $y z$-plane in this region, the solid region extends in the x direction from one side of the hyperboloid to the opposite side. The relevant bound on x come from solving $\frac{x^{2}}{4}+\frac{y^{2}}{9}-z^{2}=1$ for x. A complete description of the region is thus

$$
\begin{aligned}
-1 & \leq z \leq 2 \\
-3 \sqrt{1+z^{2}} & \leq y \leq 3 \sqrt{1+z^{2}} \\
-2 \sqrt{1+z^{2}-\frac{y^{2}}{9}} & \leq x
\end{aligned}
$$

Thus,

$$
\iiint_{R} 1 d V=\int_{-1}^{2} \int_{y_{1}(z)}^{y_{2}(z)} \int_{x_{1}(y, z)}^{x_{2}(y, z)} d x d y d z
$$

where the limits of integration can be read off from the description of the solid region. Using Mathematica, I evaluated this iterated integral and got

$$
\iiint_{R} 1 d V=9(\sqrt{2}+2 \sqrt{5}+\operatorname{arcsinh}(1)+\operatorname{arcsinh}(2)) \approx 73.9 .
$$

We can interpret this result as the volume of the solid region because the integrand is 1. For comparison, note that this solid region fits inside a cylinder of radius 3 and height 3 for which the volume is $\pi(3)^{2}(3) \approx 84.8$.
Note: The function arcsinh is the inverse hyperbolic sine function.

