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Solutions to some triple integral problems

For each of the following, set up an iterated integral equal to the given triple integral.

1.

∫∫∫

R

(x + 2y − z) dV where R = [0, 2] × [−4, 6] × [−3, 0]

Solution:

∫∫∫

R

(x + 2y − z) dV =

∫ 0

−3

∫ 6

−4

∫ 2

0

(x + 2y − z) dx dy dz

2.

∫∫∫

R

(x + 2y − z) dV where R is the solid region bounded between the graph of z = x2 + y2

and the plane 3x + 5y + 2z − 12 = 0

Solution: The graph of z = z2 + y2 is a paraboloid. We find the intersection between the
paraboloid and the plane by equating z for each to get

x2 + y2 = −
3

2
x −

5

2
y + 6.

By completing the square on the x terms and on the y terms, we can rewrite this as

(x +
3

4
)2 + (y +

5

4
)2 =

65

8
.

This is the equation of a circle of radius r0 =
√

65/8 centered at the point (−3/4,−5/4). This
circle is the projection of the intersection between the paraboloid and the plane. For points
of the xy-plane inside the circle, the solid region extends in the z-direction from z = x2 + y2

to z = −3
2
x − 5

2
y + 6. To describe the points of the xy-plane inside the disk, let’s introduce

some temporary new coordinates u = x + 3
4

and v = y + 5
4
. In uv-coordinates, the equation

of the circle is
u2 + v2 = r2

0.

We can choose constant bounds for u to get

−r0 ≤ u ≤ r0 and −
√

r2
0 − u2 ≤ v ≤

√

r2
0 − u2

as our description of the disk. Translating back to x and y gives

−r0 ≤ x + 3
4
≤ r0 and −

√

r2
0 − (x + 3

4
)2 ≤ y + 5

4
≤

√

r2
0 − (x + 3

4
)2

so we can describe the disk by

−r0 − 3
4
≤ x ≤ r0 − 3

4
and −

√

r2
0 − (x + 3

4
)2 − 5

4
≤ y ≤

√

r2
0 − (x + 3

4
)2 − 5

4
.

A complete description of the solid region is thus given by

−r0 − 3
4
≤x ≤ r0 − 3

4

−
√

r2
0 − (x + 3

4
)2 − 5

4
≤y ≤

√

r2
0 − (x + 3

4
)2 − 5

4

x2 + y2 ≤z ≤ −3
2
x − 5

2
y + 6



We can thus write

∫∫∫

R

(x + 2y − z) dV =

∫ x2

x1

∫ y2(x)

y1(x)

∫ z2(x,y)

z1(x,y)

(x + 2y − z) dz dy dx

where the limits of integration can be read off from the description of the solid region.

Using Mathematica, I evaluated this iterated integral and got
∫∫∫

R

(x + 2y − z) dV =
−1094275π

3072
≈ −1119.06.

3.

∫∫∫

R

1 dV where R is the solid region bounded by the surface x2

4
+ y2

9
− z2 = 1, the plane

z = −1 and the plane z = 2

Solution: The graph of x2

4
+ y2

9
−z2 = 1 is a hyperboloid of one sheet with main axis along the

z-axis and elliptic cross-sections parallel to the xy-plane. We are given constant bounds on
z so consider the yz cross-section. (One could also choose to work with the xy cross-section
here.) In the yz-plane, the relevant region is between the two branches of the hyperbola
y2

9
− z2 = 1 from z = −1 to z = 2. We can describe this planar region by

−1 ≤ z ≤ 2 and − 3
√

1 + z2 ≤ y ≤ 3
√

1 + z2.

For each point of the yz-plane in this region, the solid region extends in the x direction from
one side of the hyperboloid to the opposite side. The relevant bound on x come from solving
x2

4
+ y2

9
− z2 = 1 for x. A complete description of the region is thus

−1 ≤z ≤ 2

−3
√

1 + z2 ≤y ≤ 3
√

1 + z2

−2

√

1 + z2 − y2

9
≤x ≤ 2

√

1 + z2 − y2

9

Thus,
∫∫∫

R

1 dV =

∫ 2

−1

∫ y2(z)

y1(z)

∫ x2(y,z)

x1(y,z)

dx dy dz

where the limits of integration can be read off from the description of the solid region.

Using Mathematica, I evaluated this iterated integral and got
∫∫∫

R

1 dV = 9
(√

2 + 2
√

5 + arcsinh(1) + arcsinh(2)
)

≈ 73.9.

We can interpret this result as the volume of the solid region because the integrand is 1. For
comparison, note that this solid region fits inside a cylinder of radius 3 and height 3 for which
the volume is π(3)2(3) ≈ 84.8.

Note: The function arcsinh is the inverse hyperbolic sine function.


