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Stokes’ Theorem

Adding circulations

Consider two rectangular loops that share a common edge as shown below. Let
C1 be the blue loop and C2 be the red loop with orientations as shown. Let C3 be
the loop that consists of going around the outside of the large rectangle formed by
removing the common edge. We now claim that
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~F · d~s =
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~F · d~s (1)

for this situation. To see this is true, think of breaking each of these rectangular
curves into four pieces. By the properties of line integrals, we can express

∮

C1

~F · d~s

as a sum of four line integrals, one over each side of the first rectangle. Likewise, we
can express
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C2

~F · d~s as a sum of four line integrals, one over each side of the second

rectangle. The sum
∮

C1

~F · d~s +
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C2

~F · d~s will have a total of eight terms. Two of these

will involve the common edge. Since this is traversed once in each direction, these
terms cancel. The remaining six terms can be put together to give

∮

C3

~F · d~s.

This result is easily generalized to any polygonal loops that share a common edge.

Stokes’ Theorem

Let ~F be a vector field in space. Let S be a two-sided surface in the domain of ~F

with area vectors d ~A all on the same side. Let C be the curve in space that forms
the edge of S. Choose the orientation of C that is compatible with the choice of
side for d ~A. If ~F , S, and C are “nice” (in a specific technical sense), then
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· d ~A =
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C

~F · d~s. (2)

We give an outline of the proof in the following steps.

1. Start by considering the definition of surface integral. Break the surface S into
pieces ∆Sij having area vectors ∆ ~Aij = ∆Aijn̂ij. (See the figure that follows.)
For each piece, pick a point Pij at which to evaluate the vector field. Also, let



∆Cij be the curve that forms the edge of the ij-th piece. Use the definition of
surface integral to write
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~∇× ~F (Pij) · ∆ ~Aij. (3)

2. Next, recall that (~∇ × ~F ) · n̂ is defined as the circulation density for a planar

region with d ~A = dAn̂. Thus, for a small loop, we have
∮

∆C

~F · d~s ≈ (~∇× ~F ) · n̂∆A = (~∇× ~F ) · ∆ ~A (4)

That is, for a small loop, the circulation is approximately (~∇× ~F ) · ∆ ~A. Sub-
stitute into Equation (3) using Equation (4) to get
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∮
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~F · d~s.

3. The sum of line integrals on the left is over curves ∆Cij with lots of common
edges. Using the result on adding circulations, we see that all of the contribu-
tions from the interior edges cancel since each is traversed twice, once in each
direction. The net result is from the contributions on the exterior edges which
is equivalent to the line integral over the original curve C. That is,
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~F · d~s =
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C

~F · d~s.

Substituting this gives
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· d ~A =
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C

~F · d~s.

and we are done.

The technical details that are missing here justify the approximation we use in
Step 2.
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