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Curl and circulation density

Circulation

Given a vector field ~F and an oriented closed loop C in space, we can think of
the line integral

∮

C
~F · d~s as a circulation. In this interpretation, we think of ~F as

the velocity field of a fluid flow and think about the curve C as a rigid wire in this
flow. Now think about pushing a bead that is strung on the wire. The fluid flow may
help or hinder as we push the bead around the entire loop. The line integral sums up
the tangential component of the velocity times a displacement along the curve. At a
point where the tangential component of the velocity is in the same direction as the
displacement, the contribution to the line integral is positive. This corresponds to the
fluid flow helping us in pushing the bead. At a point where the tangential component
of the velocity is in the opposite direction to the displacement, the contribution to the
line integral is negative. This corresponds to the fluid flow hindering us in pushing
the bead. The line integral gives the net help along the entire curve. Thus, circulation
is a measure of how much the flow helps if we push a bead around the wire in the
direction specified by the orientation. If the circulation is positive, the fluid flow is a
net help. If the circulation is negative, the fluid flow is a net hinderance.

Circulation density and curl

Start with a vector field ~F and focus on a point P in the domain of the vector
field. Imagine a small, flat region that contains P . (You can think of a rectangle or
disk if it helps to be specific about the shape.) We will use ∆D to denote this planar
region. Here ∆ doesn’t mean “a small change in” but serves to remind us that the
region is small. Let ∆ ~A be the area vector for ∆D. Let ∆C be the closed curve that
is the edge of this region. Orient the curve ∆C so that the thumb of your right hand
points in the direction of ∆ ~A when your fingers curl around in the direction of ∆C.

Both the circulation
∮

∆C
~F · d~s and the area ∆A will go to zero as we shrink the

curve ∆C down to the point P . However, the limit of the ratio
∮

∆C

~F · d~s

∆A

might exist. This limit is the circulation density. That is, the limit of the ratio is
the circulation per unit area. We define the curl of the vector field ~F in terms of this
circulation density. The curl of ~F is itself a vector field. The following definition gives
the n̂-component of the curl of ~F as a circulation density.

The n̂-component of the curl of ~F at P is defined as the circulation density
at a point P for a loop with d ~A = dA n̂. That is,

(curl ~F ) · n̂ = lim
“∆C→P ′′

∮

∆C

~F · d~s

∆A
(1)



Figure 1 shows a curve used in calculating circulation density and the curl of the
vector field. (Need more detail here relating circulation density to a “paddlewheel”
interpretation.)

An expression for curl in cartesian coordinates

From the definition of curl in terms of circulation density, we learn what curl tells
us about the vector field. However, computing the curl from this definition is difficult.
We’ll next look at getting an expression for the curl in terms of partial derivatives
with respect to cartesian coordinates.

Let the vector field ~F be given in cartesian coordinates by

~F (x, y, z) = P (x, y, z)̂ı + Q(x, y, z)̂ + R(x, y, z)k̂.

The curl of ~F is itself a vector field so we are looking for an expression of the form

curl ~F = (̂ı-component)̂ı + (̂-component)̂ + (k̂-component)k̂.

We’ll look at the k̂-component in detail and leave the others as exercises. Let ∆D

be a small rectangle parallel to the xy-plane with ∆ ~A = ∆Ak̂. Then ∆C is oriented
counter-clockwise as viewed from above. (See Figure 2.) Let P be one corner of
this rectangle. Let ∆x and ∆y be the side lengths parallel to the x-axis and y-axis
respectively. The area of the rectangle is ∆A = ∆x ∆y. In Figure 2, the area vector
∆ ~A is shown in red.

Now let’s think about the circulation for this rectangle as given by the line integral
∮

∆C
~F · d~s. Since we will be eventually taking a limit as the rectangle shrinks to the

point P , we can approximate this line integral with just four terms, one for each side
of the rectangle. Let ∆~s1, ∆~s2, ∆~s3, and ∆~s4 be the displacement vectors along the
four sides as shown in Figure 3. For each side, we can choose where to evaluate the
vector field ~F . We will use the corners P , P1, and P2 shown in Figure 2. Specifically,
we use

∮

∆C

~F · d~s ≈ ~F (P) · ∆~s1 + ~F (P1) · ∆~s2 + ~F (P2) · ∆~s3 + ~F (P) · ∆~s4. (2)

Now let’s introduce coordinates and components for the vectors in Equation (2).

The vector field ~F has components ~F = P ı̂ + Q ̂ + R k̂. We choose coordinates
with P = (x, y, z). Since the side lengths are ∆x and ∆y, this gives us coordinates
P1 = (x + ∆x, y, z) and P2 = (x, y + ∆y, z). From the geometry, we can see that
∆~s1 = ∆x ı̂. Thus

~F (P) · ∆~s1 =
(

P (x, y, z) ı̂ + Q(x, y, z) ̂ + R(x, y, z) k̂
)

·
(

∆x ı̂
)

= P (x, y, z)∆x.

The other three terms are similar:

∆~s2 = ∆y ̂ so ~F (P1) · ∆~s2 = Q(x, y + ∆x, z)∆y

∆~s3 = −∆x ı̂ so ~F (P2) · ∆~s3 = −P (x, y + ∆y, z)∆x

∆~s4 = −∆y ̂ so ~F (P) · ∆~s4 = −Q(x, y, z)∆y
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Stop here and make sure you understand how to get these expressions including the
negative signs in the last two of these.

Now substitute into Equation (2) to get

∮

∆C

~F · d~s ≈ P (x, y, z)∆x + Q(x, y + ∆x, z)∆y − P (x, y + ∆y, z)∆x − Q(x, y, z)∆y

=
[

P (x, y, z) − P (x, y + ∆y, z)
]

∆x +
[

Q(x, y + ∆x, z) − Q(x, y, z)
]

∆y

=
[

Q(x, y + ∆x, z) − Q(x, y, z)
]

∆y −
[

P (x, y + ∆y, z) − P (x, y, z)
]

∆x

Thus, the ratio of circulation to area enclosed is

∮

∆C

~F · d~s

∆A
=

[

Q(x, y + ∆x, z) − Q(x, y, z)
]

∆y −
[

P (x, y + ∆y, z) − P (x, y, z)
]

∆x

∆x ∆y

=
Q(x, y + ∆x, z) − Q(x, y, z)

∆x
−

P (x, y + ∆y, z) − P (x, y, z)

∆y
. (3)

Now consider the limit as ∆C shrinks to the point P . We achieve this by taking
∆x → 0 and ∆y → 0. Note each of the two terms on the right side of Equation (3)
will give a partial derivative in this limit. We thus have

k̂-component of curl ~F at P = lim
∆x,∆y→0

∮

∆C

~F · d~s

∆A
=

∂Q

∂x
−

∂P

∂y
(4)

for an “infinitesimal loop” parallel to the xy-plane. Another way to specify this
orientation is to say the area vector for this “infinitesimal loop” is d ~A = dA k̂.
Exercise: Compute the ı̂- and ̂-components of the curl of ~F . The answers are

ı̂-component of curl ~F at P =
∂R

∂y
−

∂Q

∂z
(5)

̂-component of curl ~F at P =
∂P

∂z
−

∂R

∂x
. (6)

Putting these together, we have the following result.

In cartesian coordinates, the curl of

~F = P (x, y, z)̂ı + Q(x, y, z)̂ + R(x, y, z)k̂

is given by

curl ~F =
(∂R

∂y
−

∂Q

∂z

)

ı̂ +
(∂P

∂z
−

∂R

∂x

)

̂ +
(∂Q

∂x
−

∂P

∂y

)

k̂. (7)
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Figure 1. Left: A small flat region ∆D with area vector ∆ ~A = ∆A n̂ in red.
Right: Same as left with the addition of the curl of ~F at P (in green).
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Figure 2. The small rectangle ∆C shown in perspective (left) and
from above (right).
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Figure 3. The points and edges of the small rectangle ∆C.

If you have corrections or suggestions for improvements to these notes, please contact Martin

Jackson, Department of Mathematics and Computer Science, University of Puget Sound,

Tacoma, WA 98416, martinj@ups.edu.
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