Some more problems on divergence and curl

1. Prove each of the following identities.
(a) $\vec{\nabla} \cdot \vec{\nabla} \times \vec{F}=0$ for a vector field $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
(b) $\vec{\nabla} \cdot(\vec{\nabla} f \times \vec{\nabla} g)=0$ for a pair of functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$
2. Consider a vector field of the form $\vec{F}(\vec{r})=r^{n} \hat{r}$ in a k-dimensional universe. For example, the $k=2$ universe is the plane for which $\vec{r}=\langle x, y\rangle$ and the $k=3$ universe is ordinary space for which $\vec{r}=\langle x, y, z\rangle$. We can also consider universes of dimension $k>3$.
(a) Find an expression for $\vec{\nabla} \cdot \vec{r}$ in dimension k.
(b) Find a general expression for $\vec{\nabla} \cdot \vec{F}(\vec{r})=\vec{\nabla} \cdot\left(r^{n} \hat{r}\right)$. Note that this expression will involve both the dimension k and the power n. Hint: Use a product rule, your result for (a), and a result about gradients from earlier in the semester.
(c) Consider static electric fields \vec{E} in "flatland," that is, the $k=2$ universe. Suppose that $\vec{\nabla} \cdot \vec{E}=0$ for the electric field due to a point charge (at any point other than the position of the point charge). From this, deduce the form of Coulomb's law in the $k=2$ universe. Compare this to Coulomb's law in the $k=3$ universe.
