Notes on notation for line integrals
In class, we defined the line integral of the vector field \vec{F} for the curve C as

$$
\int_{C} \vec{F} \cdot d \vec{s}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t
$$

The text uses an alternate notation for the line integral. Here's the connection: Write the vector field \vec{F} in terms of components as $\vec{F}=u \hat{\imath}+v \hat{\jmath}+w \hat{k}$ and write the vector $d \vec{s}$ in terms of components as $d \vec{s}=d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k}$. Here, think of $d x$ as a small displacement parallel to the x-axis, $d y$ as a small displacement parallel to the y axis, and $d z$ as a small displacement parallel to the z-axis. With these component expressions, we can write out the dot product as

$$
\vec{F} \cdot d \vec{s}=u d x+v d y+w d z
$$

Using this, the notation for line integral is

$$
\int_{C} \vec{F} \cdot d \vec{s}=\int_{C} u d x+v d y+w d z
$$

The text favors the expression on the right side and I generally use the expression on the left side.

Most of the problems are given using the notation on right side. For example, Problem 3 involves the line integral

$$
\int_{C}(-y d x+x d y)
$$

From this, you can read off that the vector field is $\vec{F}(x, y)=\langle-y, x\rangle$ (or $-y \hat{\imath}+x \hat{\jmath}$ if you prefer).

