Regular Sturm-Liouville problems

A Sturm-Liouville problem consists of

ODE: $\quad-\left(p(x) y^{\prime}(x)\right)^{\prime}+q(x) y(x)=\lambda y(x) \quad$ for $a<x<b$
$\mathrm{BC} 1: \quad \alpha_{1} y(a)+\alpha_{2} y^{\prime}(a)=0$
$\mathrm{BC} 2: \quad \beta_{1} y(b)+\beta_{2} y^{\prime}(b)=0$
A Sturm-Liouville problem is regular if

- $p p^{\prime}$, and q are continuous for $a \leq x \leq b$
- $p(x)>0$ for $a \leq x \leq b$
- $\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0)$ and $\left(\beta_{1}, \beta_{2}\right) \neq(0,0)$

Regular Sturm-Liouville problems

For a regular Sturm-Liouville problem:
(1) There are countably many eigenvalues $\lambda_{n}, n=1,2,3, \ldots$

2 Each eigenvalue is real.
(3) There is a smallest eigenvalue and no largest eigenvalue so the eigenvalues can be ordered $\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$ with $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$.
4 For each eigenvalue, there is a one-dimensional eigenspace that is spanned by a single eigenfunction y_{n}.
5) The eigenfunction y_{n} has $n-1$ zeros for $a<x<b$.

6 The set of eigenfunctions $\left\{y_{n} \mid n=1,2,3, \ldots\right\}$ is a maximal orthogonal set in $L^{2}[a, b]$ with respect to the inner product $<f, g>=\int_{a}^{b} f(x) g(x) d x$ and hence a basis.

