ODE review problems

In the following problems, the independent variable is x and the dependent variable is y.

- 1. Find the general solution of the differential equation $y' = xy^2 + x$.
- 2. Consider the differential equation $y' = 3y + e^x$.
 - (a) Find the general solution using the fact that the general solution to a first-order linear differential equation has the form $y = cy_h + y_p$ where *c* is a constant, y_h is a solution to the related homogeneous equation, and y_p is a solution to the nonhomogeneous equation.
 - (b) Find the general solution using an integrating factor.
- 3. For each of the following, find the general solution for the given differential equation.
 - (a) y'' + 2y' 15y = 0
 - (b) y'' + 6y' + 13y = 0
 - (c) $x^2y'' 3xy' + 3y = 0$ Hint: Look for solutions in the form $y = x^m$ where *m* is constant.
- 4. The basic hyperbolic functions are defined as

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 and $\sinh x = \frac{e^x - e^{-x}}{2}$.

- (a) Plot $\frac{1}{2}e^x$ and $\frac{1}{2}e^{-x}$ on the same plot. Use these to sketch $\cosh x = \frac{1}{2}e^x + \frac{1}{2}e^{-x}$ on that plot. Finally, sketch $\sinh x = \frac{1}{2}e^x \frac{1}{2}e^{-x}$ on the same plot.
- (b) Show that $\cosh^2 x \sinh^2 x = 1$.
- (c) Show that $\text{Span}(e^x, e^{-x}) = \text{Span}(\cosh x, \sinh x)$.
- (d) Express the general solution of y'' = 9y in terms of exponential functions. Find the specific solution that satisfies the initial conditions y(0) = 5 and y'(0) = 0.
- (e) Express the general solution of y'' = 9y in terms of hyperbolic functions. Find the specific solution that satisfies the initial conditions y(0) = 5 and y'(0) = 0.