ODE review problems

In the following problems, the independent variable is x and the dependent variable is y.

1. Find the general solution of the differential equation $y^{\prime}=x y^{2}+x$.
2. Consider the differential equation $y^{\prime}=3 y+e^{x}$.
(a) Find the general solution using the fact that the general solution to a first-order linear differential equation has the form $y=c y_{h}+y_{p}$ where c is a constant, y_{h} is a solution to the related homogeneous equation, and y_{p} is a solution to the nonhomogeneous equation.
(b) Find the general solution using an integrating factor.
3. For each of the following, find the general solution for the given differential equation.
(a) $y^{\prime \prime}+2 y^{\prime}-15 y=0$
(b) $y^{\prime \prime}+6 y^{\prime}+13 y=0$
(c) $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$

Hint: Look for solutions in the form $y=x^{m}$ where m is constant.
4. The basic hyperbolic functions are defined as

$$
\cosh x=\frac{e^{x}+e^{-x}}{2} \quad \text { and } \quad \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

(a) Plot $\frac{1}{2} e^{x}$ and $\frac{1}{2} e^{-x}$ on the same plot. Use these to sketch $\cosh x=\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}$ on that plot. Finally, sketch $\sinh x=\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}$ on the same plot.
(b) Show that $\cosh ^{2} x-\sinh ^{2} x=1$.
(c) Show that $\operatorname{Span}\left(e^{x}, e^{-x}\right)=\operatorname{Span}(\cosh x, \sinh x)$.
(d) Express the general solution of $y^{\prime \prime}=9 y$ in terms of exponential functions. Find the specific solution that satisfies the initial conditions $y(0)=5$ and $y^{\prime}(0)=0$.
(e) Express the general solution of $y^{\prime \prime}=9 y$ in terms of hyperbolic functions. Find the specific solution that satisfies the initial conditions $y(0)=5$ and $y^{\prime}(0)=0$.

