
MATH 302 Partial Differential Equations Fall 2011

Density

Most of us first learned about density as “mass divided by volume”. This made
sense in considering a specific object of uniform composition. We can separately
measure the mass M and the volume V of the object and then compute density as
M/V. We will use the symbol ρ (the lower case Greek letter “rho”) to denote this
density. A formula for density is thus ρ = M/V.

Exercise 1: The density of aluminum is about 2.7 g/cm3. Determine the mass of an
aluminum cube with sides of length 2 cm.

Some objects are more naturally measured in terms of length or area rather
than volume. For something like a rope or rod, we can use length density defined
as “mass per length”. We will typically use the symbol λ (the lower case Greek
letter “lambda”) to denote length density.

Exercise 2: A particular type of rope has a length density of λ = 0.15 kg per meter.
What is the mass of a 3 meter piece of this rope?

For something like a sheet of paper or a piece of plywood, we can use area
density defined as “mass per area”. To denote area density, we will generally use σ
(the lower case Greek letter “sigma”).

Exercise 3: A standard type of newsprint has an area density of 48.8 g/m2. Determine
the mass of a roll of this newsprint that is 2 meters wide and 100 meters long.

You will encounter many references to density that do not specifically refer to
length, area, or volume. You will need to use context and units to determine which
type of density is in play.

Density need not refer to mass. Other quantities for which density is relevant
include number, cost, charge, and probability. For example, the advertised cost of
flooring is often given in dollars per square foot so a particular carpet might be
listed as $4.25 per square foot. This is an area density for cost.



Exercise 4: A circular lid of radius 3 inches is made from material that $0.04 per square
inch. Determine the total cost of the material for the lid.

In each of the exercises above, the density is uniform throughout the rele-
vant region si the total is easily computed as the density multiplied by a mea-
sure (length, area, or volume) of the region. An object with uniform composition
throughout has the same mass density at each point. Likewise, if charge is spread
uniformly throughout a region, the charge density is the same at each point. More
generally, density varies from point to point throughout the relevant region. If
mass or charge is not distributed uniformly, then the density varies from point to
point and computing a total becomes more interesting.

Our first step in working with a nonuniform density is to find useful mathe-
matical descriptions. We’ll start here by examining nonuniform density on a line
segment. (Later in the course, we’ll generalize to nonuniform density on more
interesting regions.) The following example illustrates several ways to describe a
nonuniform density.

Example 1
Charge is distributed along a line segment of length L so that the length charge density
is proportional to the distance from one end of the segment. Let λ0 denote the maximum
charge density. Use a picture, a graph, and a formula to describe the density function for
this distribution.

We begin by constructing a picture using shading to illustrate varying density
as shown in Figure 1. Here, we choose a coordinate axis so that one end of the
segment is at the origin x = 0 and the other end is at x = L. In this case, the
density values range from λ = 0 at x = 0 to the maximum value λ = λ0 at x = L.
In this case, all values of λ are positive, so we choose a grayscale shading in which
white represents a density of 0 and black represents the maximum density λ0.

Figure 1: Schematic picture of the charge distribution for Example 1.
This type of density plot gives us one view of the charge distribution. We can

convey the same information by plotting the density as a function of position (mea-
sured using the coordinate system described above) as shown in Figure 2.
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Figure 2: Graph of the charge density for Example 1.

To build a formula for density λ as a function of position x, we note that λ is
proportional to the distance from x = 0 and x measures that distance so we can
introduce a proportionality constant k and write

λ = kx.

To determine the value of k, we note that λ = λ0 for x = L. Substituting these
specific values in the proportionality relation gives us

λ0 = kL. (1)

Solving, we find k = λ0/L so we can substitute this into (1) to get

λ =
λ0

L
x (2)

As a consistency check, note that our relation gives the correct values of λ = 0 for
x = 0 and λ = λ0 for x = L.

For another consistency check, we can look at units. In SI units, length has units
of meters (m) and charge has units of Coulombs (C) so length charge density has
units of C/m. So, the variable λ on the left side of (2) has units of C/m. On the
right side of (2), the parameter λ0 has units of C/m while the variable x and the
parameter L have units of m. So, the units on the right side simplify to C/m in
agreement with the units on the left side.

In the previous example, we gave two graphical ways of describing a specific
nonuniform density distribution: a density plot and a graph of density as a func-
tion of position. A density plot provides useful qualitative information but is dif-
ficult to read quantitatively. As a second example, consider a situation in which
charge is distributed on a line segment with the length charge density proportional
to the square of the distance from one end. A density plot and graph of density ver-
sus position for this distribution is shown in Figure 3(b) with the previous density
plot and graph repeated on the Figure 3(a) for comparison.
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(a) Density proportional to distance from
x = 0.
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(b) Density proportional to square of dis-
tance from x = 0.

Figure 3: Comparing two charge distributions.

For a density with both positive and negative values, we could use a grayscale
shading or we could use two colors, with one color representing positive values
and the other representing negative values. We illustrate this in the next example.

Example 2
Charge is distributed along a line segment of length L so that the length charge density
varies sinusoidally through one cycle starting with value λ = 0 at one end. Let λ0 denote
the maximum charge density. Use a picture, a graph, and a formula to describe the density
function for this distribution.

In Figure 4, we show a density plot and a graph of density versus position. In
the density plot, white presents λ = 0, the darkest blue represents λ = λ0, and the
darkest red represents λ = −λ0.
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Figure 4: Charge distribution for Example 2.

To determine a formula, we can use a sine function with suitable choices of
amplitude and period. In this case, the amplitude is λ0 and the period is L so we
have

λ = λ0 sin
(2π

L
x
)

.

As a consistency check, note that the formula gives λ = 0 for x = 0 and λ = 0 for
x = L.



Knowing a length charge density along a line segment, we can compute the
total charge Q using integration. Suppose we have charge distributed on a line
segment of length L with length charge density λ as shown in Figure 5. We let x
measure the position along the segment starting with x = 0 at one end. For an in-
finitesimal piece of the segment having length dx, the corresponding infinitesimal
charge is λ dx. (To be more precise, we could use λ(x) to indicate a specific value
of the charge density for the specific position x.)

Figure 5: An infinitesimal piece of a typical segment.

We get the total charge Q by summing up these infinitesimal contributions. We
express this as the integral

Q =
∫ L

0
λ dx. (3)

To evaluate the integral, we need a specific charge density function as illus-
trated in the next example.

Example 3
Compute the total charge for the situation of Example 1 in which charge is distributed
along a line segment of length L so that the length charge density is proportional to the
distance from one end of the segment with λ0 denoting the maximum charge density.

In Example 1, we found a formula for the length charge density to be

λ =
λ0

L
x.

Using this in (3), we have

Q =
∫ L

0

λ0

L
x dx.

Use the constant factor property of definite integrals and the Fundamental Theo-
rem of Calculus, we get

Q =
λ0

L

∫ L

0
x dx =

λ0

L
1
2

x2

∣∣∣∣∣
L

0

=
1
2

λ0

L
L2 =

1
2

λ0L.

The final expression has the correct units since λ0 has units of C/m while L has
units of m so the product has units of C. The expression also makes intuitive sense
in the following way: Imagine redistributing the charge by moving charge from
the right half of the segment to the left half. Since the charge increases linearly
with distance from the left end, we can redistribute the charge to get a uniform
distribution with length charge density equal to 1

2 λ0. The total charge for this
configuration would be 1

2 λ0L. This matches our result above.

If the region in question is two-dimensional, then computing a total from a
density involves constructing and evaluating a double integral (or, more generally,



a surface integral). If σ represents an area charge density for a surface S, then the
total charge Q is given by

Q =
∫∫
S

σ dA.

In similar fashion, computing a total from a volume density ρ generally involves
constructing and evaluating a triple integral over the relevant three-dimensional
region D:

Q =
∫∫∫

D

ρ dV

Example 4
Charge is distributed on a square of side length L so that the area charge density is propor-
tional to the square of the distance from one corner, reaching a maximum value σ0 at the
opposite corner. Use a picture, a graph, and a formula to describe the density function for
this distribution. Then, compute the total charge.

To start, we set up a cartesian coordinate system with origin on the corner of
the square at which the density is zero with axes running parallel to the sides of
the square as shown on the left in Figure 6. At a generic point (x, y), the distance
to the origin is given by x2 + y2. Since the density is proportional to this distance
squared, we can introduce a proportionality constant k and write

σ = k(x2 + y2).

The corner farthest from the origin has coordinates (L, L) so we know that

σ0 = k(L2 + L2) = 2kL2.

Solving, we find k = σ0/2L2. Substituting this into the expression above gives

σ =
σ0

2L2 (x2 + y2).

A plot of σ as a function of x and y is shown on the right in FIgure 6.
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Figure 6: Charge distribution for Example .



To compute the total charge, we start with the double integral

Q =
∫∫

square

σ dA.

The equivalent iterated integral is

Q =
∫ L

0

∫ 2L2

0

σ0

2L
(x2 + y2) dxdy.

Evaluating this integral in steps we have

Q =
σ0

2L2

∫ L

0

∫ L

0
(x2 + y2) dxdy =

σ0

2L2

∫ L

0
(x2y +

1
3

y3
∣∣∣L
0

dx

=
σ0

2L2

∫ L

0
(Lx2 +

1
3

L3) dx =
σ0

2L2 (
1
3

Lx3 +
1
3

L3x
∣∣∣L
0

=
σ0

2L2 (
1
3

L4 +
1
3

L4) =
σ0

2L2
2
3

L4 =
1
3

σ0L2.

The final expression has the correct units since σ0 has units of C/m2 while L2

has units of m2 so the product has units of C. The expression is also consistent with
the upper bound of σ0L2 that we get by thinking about a uniform distribution with
the maximum charge density σ0 throughout the square.



Problems

1. Consider a situation in which charge is distributed on a line segment of
length L with length charge density proportional to the square of the distance
from one end. Let λ0 denote the maximum charge density at the other end. A
schematic picture and a graph of this charge density is shown in Figure 3(b).

(a) Construct a formula for the length charge density.

(b) Compute the total charge on the segment.

2. Charge is distributed on a line segment of length L with length charge density
proportional to the the distance from the center of the segment. Let λ0 denote
the maximum charge density.

(a) Sketch a schematic picture using shading to represent density.

(b) Set up a coordinate axis along the line segment with the origin at one
end of the segment. Sketch a plot of density as a function of position as
measured on this coordinate axis.

(c) Set up a coordinate axis along the line segment with the origin at the
center of the segment. Sketch a plot of density as a function of position
as measured on this coordinate axis.

(d) Construct a formula for the density as a function of position. For this,
you can use either of the coordinate systems from (b) and (c).

(e) Compute the total charge on the segment.

3. Repeat the steps of the previous problem for the situation in which the length
charge density is proportional to the square of the distance from the center of
the segment.

4. Consider a thin rectangular plate of dimensions L by W with uniform thick-
ness. The materials composing the plate vary from point to point so that the
area mass density is proportional to the square of the distance from the center
of the plate, reaching a maximum of σ0 at each of the four corners. Compute
the total mass M of the plate.

5. Charge is distributed on an isosceles triangle of height H and base length B
so that the area charge density is proportional to the distance from the base,
reaching a maximum of σ0 at the vertex opposite the base. Compute the total
charge Q.

6. Charge is distributed throughout a rectangular region of space having di-
mension L by W by H so that the volume charge density is proportional to
the square of the distance from one corner, reaching a maximum of δ0 at the
far corner. Compute the total charge Q.


