Problem: A solid rectangular region of dimensions L by W by H has non-uniform composition so that the volume mass density is proportional to the square of the distance from one corner, reaching a maximum value δ_{0} at the far corner. Compute the total mass.

Total from volume density

Problem: Compute the volume of the solid region in the first octant bounded by the coordinate planes $(x=0, y=0, z=0)$ and by the surface $z=4-x^{2}-y^{2}$.

Total from volume density

Problem: A solid cylinder of height H and radius R has non-uniform composition so that the volume mass density is proportional to the distance from the central axis, reaching a maximum value δ_{0} at the surface. Compute the total mass.

Total from volume density

Problem: A solid sphere of radius R has non-uniform composition so that the volume mass density is proportional to the square of the distance from the center, reaching a maximum value δ_{0} at the surface. Compute the total mass.

