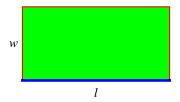
Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.

Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.

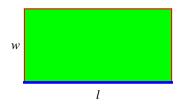


Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.



Objective: Minimize $C = 50\ell + 30w + 2 \cdot 30w = 80\ell + 60w$.

Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.



Objective: Minimize $C = 50\ell + 30w + 2 \cdot 30w = 80\ell + 60w$.

Constraint: Need $\ell w = 1200$.

$$\ell = \frac{1200}{w}$$

$$\ell = \frac{1200}{w}$$
 so $C = 80\ell + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w$.

$$\ell = \frac{1200}{w}$$
 so $C = 80\ell + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w$.

Compute
$$C' = -\frac{96000}{w^2} + 60$$
.

$$\ell = \frac{1200}{w}$$
 so $C = 80\ell + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w$.

Compute
$$C' = -\frac{96000}{w^2} + 60$$
.

Solve
$$-\frac{96000}{w^2} + 60 = 0$$
 to get $w = \pm 40$.

$$\ell = \frac{1200}{w}$$
 so $C = 80\ell + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w$.

Compute
$$C' = -\frac{96000}{w^2} + 60$$
.

Solve
$$-\frac{96000}{w^2} + 60 = 0$$
 to get $w = \pm 40$.

Use
$$w = 40$$
 to get $\ell = \frac{1200}{40} = 30$

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

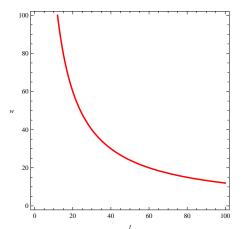
$$\ell = \frac{1200}{w}$$
 so $C = 80\ell + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w$.

Compute
$$C' = -\frac{96000}{w^2} + 60$$
.

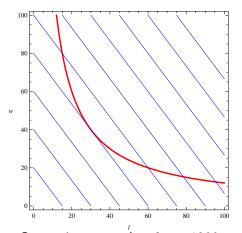
Solve
$$-\frac{96000}{w^2} + 60 = 0$$
 to get $w = \pm 40$.

Use
$$w = 40$$
 to get $\ell = \frac{1200}{40} = 30$

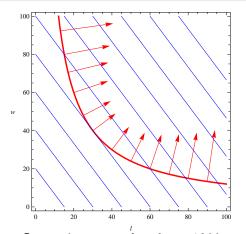
So build fence with expensive edge of length 30 meters and other dimension of 40 meters.



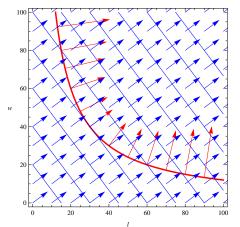
Constraint curve $A = \ell w = 1200$ Level curves for objective $C = 80\ell + 60w$ Gradient vectors for constraint $A = \ell w$ Gradient vectors for objective $C = 80\ell + 60w$



Constraint curve $A = \ell w = 1200$ **Level curves for objective** $C = 80\ell + 60w$ Gradient vectors for constraint $A = \ell w$ Gradient vectors for objective $C = 80\ell + 60w$



Constraint curve $A = \ell w = 1200$ Level curves for objective $C = 80\ell + 60w$ **Gradient vectors for constraint** $A = \ell w$ Gradient vectors for objective $C = 80\ell + 60w$



Constraint curve $A=\ell w=1200$ Level curves for objective $C=80\ell+60w$ Gradient vectors for constraint $A=\ell w$ Gradient vectors for objective $C=80\ell+60w$

Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

objective level curve is tangent to constraint curve

Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

objective level curve is tangent to constraint curve \bigoplus objective gradient $\vec{\nabla} C$ is aligned with constraint gradient $\vec{\nabla} A$

Maximum or minimum of objective along constraint curve will be at a point where

objective level curve is tangent to constraint curve \bigoplus objective gradient $\vec{\nabla} C$ is aligned with constraint gradient $\vec{\nabla} A$ \bigoplus $\vec{\nabla} C = \lambda \vec{\nabla} A$ for some constant λ

Maximum or minimum of objective along constraint curve will be at a point where

objective level curve is tangent to constraint curve $\bigoplus_{}$ objective gradient $\vec{\nabla} C$ is aligned with constraint gradient $\vec{\nabla} A$ $\bigoplus_{} \vec{\nabla} C = \lambda \vec{\nabla} A \text{ for some constant } \lambda$ $\bigoplus_{} \vec{\nabla} (C + \lambda A) = \vec{0} \text{ for some constant } \lambda$