A Sturm-Liouville problem

Consider the Sturm-Liouville problem

$$y''(x) = -\lambda y(x) \qquad \text{for } 0 < x < l$$
$$y(0) = 0$$
$$y(l) + y'(l) = 0$$

- 1. Use a Raleigh quotient (or energy) argument to bound the set of eigenvalues. Hint: Multiply both sides of the ODE by y and then integrate both sides from x = 0 to x = l.
- 2. Find a "characteristic equation" for the eigenvalues.
- 3. Use your equation from 2 to argue that there are countably many eigenvalues λ_n that can be ordered as $\lambda_1 < \lambda_2 < \dots$ with $\lambda_n \to \infty$ as $n \to \infty$. Hint: Think graphically.
- 4. Estimate λ_1 , λ_2 , and λ_3 .
- 5. Come up with a formula that gives approximate values of λ_n for large values of n.