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MATH 280 Multivariate Calculus Spring 2007 Final Exam

Instructions: You can work on the problems in any order. Please use just one side of each
page and clearly number the problems. You do not need to write answers on the question sheet.

This exam is a tool to help me (and you) assess how well you are learning the course material.
As such, you should report enough written detail for me to understand how you are thinking
about each problem. (115 points total)

1. For a function f : R
3 → R, we can compute the gradient vector field ~∇f .

(a) For a specific point P , what information do we get from the direction of ~∇f(P )?
(3 points)

(b) For a specific point P , what information do we get from the magnitude of ~∇f(P )?
(3 points)

2. (a) List two different types of integral that we have introduced in this course. For each
type, give (4 points)

• the type of function used as the integrand (in the form f : A → B)

• the type of geometric region or object over which the integration is done

(b) What, fundamentally, is an integral? That is, what is common to all of types of
integral that we have seen? (3 points)

3. Prove the following: If ~u and ~v are nonzero vectors, then |~v|~u + |~u|~v and |~v|~u − |~u|~v are
perpendicular. (6 points)

4. The function ~r(t) = 4t sin(πt) ı̂ + 4t cos(πt) ̂ + 10t k̂ traces out a curve C.

(a) Find the value of t corresponding to the point (2, 0, 5) on C. (3 points)

(b) Find a vector tangent to the curve C at the point (2, 0, 5). (6 points)

(c) Find an equation of the plane that contains the point (2, 0, 5) and that is perpendic-
ular to the curve C at this point. (5 points)

5. Consider the function f(x, y) =
x

y2
.

(a) Sketch a plot of the level curve that contains the point (8, 2). (3 points)

(b) Compute the gradient of f for the point (8, 2). Sketch this gradient vector on your
plot from (a). (6 points)

(c) Compute the rate of change in f at (8, 2) in the direction of the point (4, 5). (5 points)

6. Show that (−4, 2) is a critical input for the function f(x, y) = xy4+2x2+128y and classify
this input as a local minimizer, a local maximizer, or neither. (12 points)

There is more on the flip side.



7. Consider the vector field ~F = y ı̂ + x ̂ + xyz k̂.

(a) Compute the divergence of ~F for the point (2, 3, 1). (4 points)

(b) Give some interpretation of your result for (a). (3 points)

(c) Compute the curl of ~F for the point (2, 3, 1). (4 points)

(d) Give some interpretation of your result for (c). (3 points)

8. Consider the planar vector field ~F = x2 ̂.

(a) Sketch a vector field plot of ~F for the region given by 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2.
(4 points)

(b) Let C1 be the line segment from (0, 2) to (−2, 0). Draw C1 on your vector field plot

from (a). Determine if

∫
C1

~F · d~r is negative, zero, or positive. Give a geometric

justification for your conclusion. (4 points)

(c) Let C2 be the line segment from (0, 1)) to (1, 1). Draw C2 on your vector field plot

from (a). Determine if

∫
C2

~F · d~r is negative, zero, or positive. Give a geometric

justification for your conclusion. (4 points)

9. Do any three of the following four problems. Circle the problem label of the problems you
are submitting. (10 points each)

(A) Consider the function f(x, y, z) = xz cos(πy). Compute

∫
C

~∇f · d~r where C is any

curve from (1, 0, 1) to (3, 2, 5)

(B) Set up an iterated integral (or integrals) equal to the triple integral

∫∫∫
D

f dV where

f(x, y, z) = x2z2 and D is the solid region inside both the cylinder x2 + y2 = 4 and
the sphere of radius 6 centered at the origin. Express any iterated integral entirely
in terms of three variables (of your own choosing). You do not need to evaluate the
integral(s).

(C) Charge is distributed on a hemisphere of radius R. Think of this as the northern
hemisphere of the earth. The area charge density is proportional to the distance
from the plane containing the equator with a value of 0 on the equator and a value
of σ0 at the north pole. Compute the total charge on the hemisphere in terms of R

and σ0.

(D) Evaluate the surface integral

∫̈
§

¥
¦

∫
S

~F · d ~A where ~F = 3x ı̂ + 2y ̂ + 5z k̂ and S is the

closed surface that consists of the right circular cylinder x2 + y2 = 9 for −1 ≤ z ≤ 4
together with a disk at the bottom and a disk at the top.
Hint: Use the Divergence Theorem.


