Name			
MATH 280	Multivariate Calculus	Spring 2007	Exam $\#5$
Instructions: Yo	u can work on the problems in an	y order. Please use just	one side of each
page and clearly n	umber the problems. You do not ne	eed to write answers on th	e question sheet.
This exam is a t	cool to help me (and you) assess how	w well you are learning the	e course material.
As such, you shou	ld report enough written detail for	r me to understand how	you are thinking

about each problem. (100 points total)

- 1. (a) For a vector field $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$ and an oriented curve C in the domain of \vec{F} , the line integral $\int_C \vec{F} \cdot d\vec{r}$ is defined as the limit of a certain Riemann sum. Explain what is being added in this Riemann sum. Include a picture to explain the geometric meaning of relevant things in your explanation. (7 points)
 - (b) For a scalar function $f : \mathbb{R}^3 \to \mathbb{R}$ and a surface S in the domain of f, the surface integral $\iint_S f \, dA$ is defined as the limit of a certain Riemann sum. Explain what is being added in this Riemann sum. Include a picture to explain the geometric meaning of relevant things in your explanation. (7 points)
- 2. Charge is distributed on a right circular cylinder of radius R and height H. (The cylinder is a surface, not a solid region. Also, there are no "caps" on the cylinder to worry about.) The area charge density is proportional to the distance from one end of the cylinder with a value of 0 at one end and a value of σ_0 at the other end. Compute the total charge on the region in terms of R, H, and σ_0 . (12 points)
- 3. Set up a definite integral equal to the line integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = xz^2 \hat{\imath} + \hat{\jmath} + \sin x \hat{k}$ and C is the curve parametrized by $\vec{r}(t) = 3\cos t \hat{\imath} + 3\sin t \hat{\jmath} + 5t \hat{k}$ for t from 6 to 2. Express the definite integral entirely in terms of one variable. You do not need to evaluate the integral. (12 points)
- 4. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = z^2 \hat{\imath} + (z+1) \hat{\jmath} + (2xz+y) \hat{k}$ and C is a curve starting at (3,0,2) and ending at (1,1,1).
- 5. Prove that the curl of the gradient of a scalar field is zero. That is, prove the identity $\vec{\nabla} \times (\vec{\nabla} f) = \vec{0}$ for a function $f : \mathbb{R}^3 \to \mathbb{R}$. (10 points)

There is more on the flip side.

- 6. Consider the vector field $\vec{F} = (x + \sin y)\hat{\imath} + y^2z\hat{\jmath} + x^2\hat{k}$.
 - (a) Compute the divergence of \vec{F} for the point (2, -3, 1). (7 points)
 - (b) Consider \vec{F} as the velocity field for fluid flow. Imagine a small drop of dye placed at the point (2, -3, 1). Describe how the volume of the drop will change (instantaneously) as the dye particles move with the flow. (3 points)
 - (c) Compute the curl of \vec{F} for the point (2, -3, 1). (7 points)
 - (d) Consider \vec{F} as the velocity field for fluid flow. Imagine a small paddlewheel placed at the point (2, -3, 1). Compare the rotation of the paddlewheel when its axis is in the \hat{i} -direction with the rotation of the paddlewheel when its axis is in the \hat{k} -direction. (3 points)
- 7. Consider the surface integral $\iint_{S} \vec{F} \cdot d\vec{A}$ where $\vec{F} = yz\,\hat{\imath} + xy\,\hat{\jmath} + \sin(xy)\,\hat{k}$ and S is the boundary of the solid cube defined by $0 \le x \le 3$, $0 \le y \le 3$, and $0 \le z \le 3$. (Note that S itself is a surface and not a solid region.) Orient S with outward pointing normals.
 - (a) Use the Divergence Theorem to give a triple integral that is equal to $\iint_{S} \vec{F} \cdot d\vec{A}$. (8 points)
 - (b) Evaluate $\iint_{S} \vec{F} \cdot d\vec{A}$ by evaluating the triple integral you find in (a). (6 points)
- 8. Let S_1 be the upper hemisphere $x^2 + y^2 + z^2 = 1$ with $z \ge 0$. Let S_2 be the lower hemisphere $x^2 + y^2 + z^2 = 1$ with $z \le 0$. Orient both S_1 and S_2 with normal vectors pointing away from the origin. Let \vec{F} be any vector field for which Stokes' Theorem applies on both S_1 and S_2 . Use Stokes' Theorem to show that $\iint_{S_1} (\vec{\nabla} \times \vec{F}) \cdot d\vec{A}$ and $\iint_{S_2} (\vec{\nabla} \times \vec{F}) \cdot d\vec{A}$ must be opposites. (6 points)

Conclusions of the Fundamental Theorems

FT of Calculus:
$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

FT for Line Integrals:
$$\int_{C} \vec{\nabla} V \cdot d\vec{r} = V(B) - V(A)$$

Stokes' Theorem:
$$\iint_{S} (\vec{\nabla} \times \vec{F}) \cdot d\vec{A} = \oint_{C} \vec{F} \cdot d\vec{r}$$

Divergence Theorem:
$$\iiint_{R} (\vec{\nabla} \cdot \vec{F}) dV = \oiint_{S} \vec{F} \cdot d\vec{A}$$