Total from volume density

1. Relative to a chosen cartesian coordinate system, a solid object sits in the first octant bounded by $z=4-x^2-y$ and the coordinate planes. The object has a non-uniform composition so that the volume mass density is given by $\rho(x,y,z)=3z$. Compute the total mass of the solid.

Answer:
$$M = \frac{1024}{35}$$

2. Charge is distributed throughout a rectangular region of space having dimension L by W by H so that the volume charge density is proportional to the square of the distance from one corner, reaching a maximum of ρ_0 at the far corner. Compute the total charge Q.

Answer:
$$Q = \frac{1}{3}LWH\rho_0$$

3. Charge is distributed throughout a solid (right circular) cone of radius R and height H so that the volume charge density is proportional to the square of the distance from the vertex of the cone reaching a maximum of ρ_0 along the edge of the base of the cone. Compute the total charge Q.

Answer:
$$Q = \frac{1}{10}\pi R^2 H \frac{R^2 + 2H^2}{R^2 + H^2} \rho_0$$

4. A solid sphere of radius R has a non-uniform composition so that the volume mass density is proportional to the distance from the center of the sphere reaching a maximum of ρ_0 along the surface. Compute the total mass M. Compare this mass to the total mass for a solid sphere of the same radius having uniform composition with mass density ρ_0 .

Answer:
$$M = \pi R^3 \rho_0$$

5. A solid sphere of radius R has a non-uniform composition so that the volume mass density is proportional to the distance from the surface of the sphere reaching a maximum of ρ_0 at the center. Compute the total mass M. Compare this total mass to the total mass for a solid sphere of the same radius having uniform composition with mass density ρ_0 . Also, compare this total mass to the total mass for the sphere in Problem 4.