The volume element in spherical coordinates

The figure below on the left shows a generic spherical "box" defined as the points with spherical coordinates ranging in intervals of extent $d \rho, d \phi$, and $d \theta$. Let (ρ, ϕ, θ) be the spherical coordinates of some particular point in the box. The figure on the right shows a zoomed-in view of the box with the edge lengths labeled L_{1}, L_{2}, and L_{3}.

1. What is L_{1} in terms of $\rho, \phi, \theta, d \rho, d \phi$, and $d \theta$ (as needed)?
2. The length L_{2} is the length of an arc of a circle.
(a) What is the radius of this circle?
(b) What is the angle subtended by the arc?
(c) What is L_{2} in terms of $\rho, \phi, \theta, d \rho, d \phi$, and $d \theta$ (as needed)?
3. The length L_{3} is also the length of an arc of a circle.
(a) What is the radius of this circle?

Hint: Draw a vertical cross-section of the sphere.
(b) What is the angle subtended by the arc?
(c) What is L_{3} in terms of $\rho, \phi, \theta, d \rho, d \phi$, and $d \theta$ (as needed)?
4. Let $d V$ be the volume of the box. What is $d V$ in terms of $\rho, \phi, \theta, d \rho, d \phi$, and $d \theta$ (as needed)?

