Total from length density

1. Charge is distributed on a line segment of length L so that the length charge density is proportional to the square of the distance from one end, reaching a maximum density of λ_0 at the other end. Compute the total charge on the segment.

Answer:
$$Q = \frac{1}{3}\lambda_0 L$$

- 2. Charge is spread on a circle of radius R so that the length charge density varies around the circle. (Note that circle here means the curve as opposed to a disk.) Let λ be the charge density measured in Coulombs per meter (C/m). Let θ measure the angle on the circle from a fixed reference ray (conventionally taken to be the positive x-axis). So, the charge density λ varies with angle θ .
 - (a) Construct a definite integral to compute the total charge on the circle. Note: Since we do not yet have a specific density function, we cannot yet evaluate this integral.
 - (b) Compute the total charge if $\lambda(\theta) = \lambda_0(1 + \cos \theta)$ where λ_0 is a positive constant.
 - (c) Compute the total charge if $\lambda(\theta) = \lambda_0 \cos^2 \theta$ where λ_0 is a positive constant.
 - (d) Get a numerical value for the total charge in (c) using the values R = 0.25 m and $\lambda_0 = 1.6 \times 10^{-3}$ C/m.

Answer: (b)
$$Q = 2\pi R\lambda_0$$
 (c) $Q = \pi R\lambda_0$