Integration over a surface problems

1. Compute the surface area of a sphere of radius R

$$
\text { Answer: } A=4 \pi R^{2}
$$

2. Compute the surface area of the lateral side of a right circular cone of height H and radius R.

$$
\text { Answer: } A=\pi R \sqrt{R^{2}+H^{2}}
$$

3. A torus is the doughnut-shaped surface formed by bending and gluing a right circular cylinder section so that the central axis forms a circle. (You can also think about a torus as generated by revolving circle around a fixed axis that does not intersect the circle.) Let R be the radius of the cylinder and B be the height of the cylinder. (Equivalently, R is the radius of the circle and B is the distance from the circle center to the rotation axis.) The cartesian coordinates of points on a torus can be described by the equations

$$
x=(B+R \sin \phi) \cos \theta, \quad y=(B+R \sin \phi) \sin \theta, \quad \text { and } \quad z=R \cos \phi
$$

for $0 \leq \phi \leq 2 \pi$ and $0 \leq \theta \leq 2 \pi$. Note that we need $B>R$ to have a true torus. If $B<R$, the surface is a "sphere with dimples at the north and south pole". If $B=0$, then these formulas describe a sphere of radius R (covered twice since $0 \leq \phi \leq 2 \pi)$.
Compute the surface area of a torus with dimensions B and R with $B>R$.

$$
\text { Answer: } A=4 \pi^{2} B R
$$

$B=3$ and $R=1$

$B=2$ and $R=3$
4. Charge is distributed on a hemisphere of radius R so that the area charge density is proportional to the distance from the equatorial plane. Compute the total charge in terms of R and the maximum density σ_{0}.

