Integration over a curve problems

- If you cannot easily evaluate a given integral exactly (because finding an antiderivative is difficult or not possible analytically), you should try getting a good numerical approximation using technology such as the fnInt feature on a TI-83/84.
- After computing a length or total quantity, you should check if your result is reasonable by finding "easy-to-compute" comparisons.

1. Compute the length of the segment of the parabola $y=x^{2}$ for $-1 \leq x \leq 1$.

$$
\text { Answer: } L=\int_{-1}^{1} \sqrt{1+4 x^{2}} d x \approx 2.958
$$

2. Compute the length of a circle of radius R.

$$
\text { Answer: } L=2 \pi R
$$

3. Compute the length of the segment of the cubic curve $y=x^{3}$ for $-1 \leq x \leq 1$.

$$
\text { Answer: } L=\int_{-1}^{1} \sqrt{1+9 x^{4}} d x \approx 3.096
$$

4. Compute the length of the segment of the sine curve $y=\sin (x)$ for $0 \leq x \leq 2 \pi$.

$$
\text { Answer: } L=\int_{0}^{2 \pi} \sqrt{1+\cos ^{2} x} d x \approx 7.640
$$

5. A curve in the plane is described parametrically by $x=t^{2}, y=t^{3}$ for $0 \leq t \leq 2$. (You can think of this as describing the path of an object moving in time with $(x, y)=\left(t^{2}, t^{3}\right)$ being the position of the object for time t.) Compute the length of the curve.

$$
\text { Answer: } L=\frac{8(10 \sqrt{10}-1)}{27}
$$

6. Compute the length of the helix that wraps 5 times around the lateral side of a right circular cylinder of radius R and height H with a constant pitch (so each wrap rises the same distance up the cylinder).

$$
\text { Answer: } L=\sqrt{(10 \pi R)^{2}+h^{2}}
$$

7. Compute the length of the helix that wraps n times around the lateral side of a right circular cone of radius R and height H with a constant pitch (so each wrap rises the same distance up the cone). The helix starts at the vertex of the cone.

$$
\text { Answer: } L=\frac{1}{2 \pi n} \int_{0}^{2 \pi n} \sqrt{H^{2}+R^{2}+R^{2} \theta^{2}} d \theta
$$

8. A curve in space is described parametrically by $x=t, y=t^{2}$, and $z=t^{3}$ for $0 \leq t \leq 2$. (You can think of this as describing the path of an object moving in time with $(x, y, z)=\left(t, t^{2}, t^{3}\right)$ being the position of the object for time t.) Compute the length of the curve.

$$
\text { Answer: } L=\int_{0}^{2} \sqrt{1+4 t^{2}+9 t^{4}} d t \approx 9.571
$$

9. Charge is distributed on a semicircle of radius R so that the length charge density is proportional to the distance from the diameter that contains the two ends of the semicircle. Let λ_{0} be the maximum charge density. Compute the total charge Q.

$$
\text { Answer: } Q=2 R \lambda_{0}
$$

10. A piece of wire has the shape of the parabola $y=\frac{b}{a^{2}} x^{2}$ for $-a \leq x \leq a$ where a and b are positive constants (each carrying units of length). The wire has a non-uniform composition so that the length mass density is proportional to the square root of the distance from the x-axis reaching a maximum density λ_{0}. Compute the total mass of the wire.
