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Notes on integration over a curve

Given a curve C in the plane or in space, we can (conceptually) break it into
small pieces each of which has a length ds.† In some cases, we will add up these small
contributions to get the total length of the curve. We will represent this as

L =

∫
C

ds.

In other cases, we will have a length density λ defined at each point on the curve and
we will add up small contributions of the form λ ds to get a total (of some quantity
such as charge or mass). We will represent this as

Total =

∫
C

λ ds.

Our general approach is to start by considering an infinitesimal displacement d~r
along the curve. A typical example is shown in the figure on the left below. The
figure on the right below shows a closer view of d~r along with components (relative
to unit vectors ı̂ and ̂) denoted dx and dy . In terms of this coordinate system, we
thus have d~r = dx ı̂ + dy ̂. For a curve in space, we would express an infinitesimal
displacement d~r in terms of components as d~r = dx ı̂+ dy ̂+ dz k̂. In either case, the
length element ds is the magnitude of the infinitesimal displacement vector. That is,
ds = ‖d~r‖.
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Since we are integrating over a one-dimensional object, we will ultimately need
to express ds in terms of one variable. For a given curve in the plane, dx and dy are
related. To determine this relationship, we need to know how x and y are related
along the curve. We can describe a curve analytically in a variety of ways such as
an implicit description (i.e., an equation relating coordinates) or parametrically (i.e.,
formulas for the coordinates in terms of some third variable). We illustrate these for
the simple case of a circle of radius R.

† We use ds rather than dL for historic reasons. Using dL for this length element would be consistent
with our use of dA for area element and dV for volume element.



Example 1

A circle of radius R can be described implicitly by the equation x2 + y2 = R2. So,
we can “d” both sides to get a linear relation between dx and dy:

d(x2 + y2) = d(R2) which implies 2x dx+ 2y dy = 0.

We can solve this for either dx or dy and then substitute into d~r. Here, we choose to
solve for dy to get

dy = −x
y
dx for y 6= 0.

Substituting into d~r, we get

d~r = dx ı̂+ dy ̂ = dx ı̂− x

y
dy ̂ =

(
ı̂− x

y
̂
)
dx for y 6= 0.

We can now compute

ds = ‖d~r‖ =

√
1 +

x2

y2
|dx|.

To get the length element entirely in terms of one variable, we can solve the equation
of the circle to get y2 = R2 − x2 and then substitute, giving

ds = ‖d~r‖ =

√
1 +

x2

R2 − x2
|dx| for x 6= ±R.

With a bit of algebra, we can rewrite this as

ds = ‖d~r‖ =
R√

R2 − x2
|dx| for x 6= ±R.

Example 2

Another way to describe a circle is to think in terms of polar coordinates. We
know that cartesian coordinates and polar coordinates are related by

x = r cos θ and y = r sin θ.

In polar coordinates, the equation of the circle is r = R so we have

x = R cos θ and y = R sin θ for 0 ≤ θ ≤ 2π.

We can “d” each of these to get

dx = −R sin θ dθ and dy = R cos θ dθ.

Substituting into d~r, we get

d~r = dx ı̂+ dy ̂ = −R sin θ dθ ı̂+R cos θ dθ ̂ = R(− sin θ ı̂+ cos θ ̂)dθ.



We can now compute

ds = R
√

sin2 θ + cos2 θ|dθ| = R
√

1|dθ| = R|dθ|.

For a circle, the relationship between ds and the dθ is much simpler than the
relationship between ds and dx. This should not be a surprise since circles are natural
to describe in polar coordinates. Note that the relationship we get in polar coordinates
is really just the arclength formula: arclength on a circle is the product of radius and
angle subtended.

In the next example, we will put our work above into use in computing a total
from a length density along a curve.

Example 3

Charge is distributed on a semicircle of radius R so that the length charge density
is proportional to the distance from the diameter that contains the two ends of the
semicircle. Compute the total charge Q in terms of R and the maximum density λ0.

We will compute the total charge by adding up small contributions over the semi-
circle. If we let λ represent the length charge density, then the small contributions
are λ ds and the total charge is

Q =

∫
semi-circle

λ ds.

A picture of the specific situation for this problem is shown below.

We will use polar coordinates as we did in Example 2. So, our description of the
semi-circle is

x = R cos θ and y = R sin θ for 0 ≤ θ ≤ π.

Using the result from Example 2, we have ds = R|dθ|.
We must also determine the length charge density λ in terms of the variable θ.

The length charge density is proportional to the distance d labeled in the plot. Using
trigonometry, we have d = R sin θ, so

λ = kd = kR sin θ

Θ

R d



for some proportionality constant k. The maximum density λ0 is at the top of the
semi-circle which corresponds to θ = π/2. So, we have

λ0 = kR sin(
π

2
) = kR which implies k =

λ0

R
.

Thus, the length density λ is related to θ by

λ =
λ0

R
R sin θ = λ0 sin θ.

So, we can express the curve integral in terms of a definite integral in the variable θ
as

Q =

∫
semi-circle

λ ds =

∫ π

0

λ0 sin θ R dθ = Rλ0

∫ π

0

sin θ dθ.

The definite integral is easy to evaluate using the Fundamental Theorem of Calculus,
giving us

Q = Rλ0

∫ π

0

sin θ dθ = Rλ0

[
− cos θ

∣∣∣π
0

= Rλ0(1 + 1) = 2Rλ0.

Note that our result Q = 2Rλ0 has the correct units. We can also check that
it is reasonable by comparing to some easy-to-compute quantity. Specifically, for a
semi-circle with a uniform charge density of λ0 at each point, the total charge is πRλ0.
Our result of 2Rλ0 is less than this which is consistent with having charge density
less than λ0 at points other than the top of the semi-circle.


